scholarly journals Sound-absorption properties of composite materials containing waste-wool and polyamide fibers

Author(s):  
Lvlihua LVLİHUA
2020 ◽  
Vol 15 ◽  
pp. 155892502091086
Author(s):  
Lihua Lyu ◽  
Jing Lu ◽  
Jing Guo ◽  
Yongfang Qian ◽  
Hong Li ◽  
...  

In order to find a reasonable way to use the waste corn husk, waste degummed corn husk fibers were used as reinforcing material in one type of composite material. And polylactic acid particles were used as matrix material. The composite materials were prepared by mixing and hot-pressing process, and they were processed into the micro-slit panel. Then, the multi-layer structural sound absorption composite materials were prepared sequentially by micro-slit panel, air cavity, and flax felt. Finally, the sound absorption properties of the multi-layer structural composite materials were studied by changing flax felt thickness, air cavity depth, slit rate, and thickness of micro-slit panel. As the flax felt thickness varied from 0 to 10 mm in 5 mm increments, the peak of sound absorption coefficient shifted to low frequency. The sound absorption coefficient in the low frequency was improved with the air cavity depth varied from 0 to 10 mm in 5 mm increments. With the slit rate increased from 3% to 7% in 2% increments, the peak of sound absorption coefficient shifted to high frequency. With the thickness of micro-slit panel increased from 2 to 6 mm in 2 mm increments, the sound absorption bandwidth was broaden, and the peak of sound absorption coefficient was increased and shifted to low frequency. Results showed that the highest sound absorption coefficient of the multi-layer structural composite materials was about 1 under the optimal process conditions.


2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


2021 ◽  
Vol 283 ◽  
pp. 122654
Author(s):  
Mohd Zul Hanif Mahmud ◽  
Norhidayah Abdul Hassan ◽  
Mohd Rosli Hainin ◽  
Che Ros Ismail ◽  
Ramadhansyah Putra Jaya ◽  
...  

2021 ◽  
pp. 1-17
Author(s):  
Seyed Ehsan Samaei ◽  
Ebrahim Taban ◽  
Umberto Berardi ◽  
Seyyed Mohammad Mousavi ◽  
Mohammad Faridan ◽  
...  

Author(s):  
Nathapong Sukhawipat ◽  
Thanathach Yingshataporn-a-nan ◽  
Tanapat Minanandana ◽  
Kitchapat Puksuwan ◽  
Laksana Saengdee ◽  
...  

2017 ◽  
Vol 15 (3) ◽  
pp. 445-451 ◽  
Author(s):  
G. Thilagavathi ◽  
S. Neela Krishnan ◽  
N. Muthukumar ◽  
Santhana Krishnan

2013 ◽  
Vol 38 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Dariusz Pleban

Abstract Efficient ultrasonic noise reduction by using enclosures requires the knowledge of absorbing properties of materials in the frequency range above 4 kHz. However, standardized methods enable determination of absorption coefficients of materials in the frequency range up to 4 kHz. For this reason, it is proposed to carry out measurements of the sound absorption properties of materials in the free field by means of a tone-burst technique in the frequency range from 4 kHz to 40 kHz at angles of incidence varying from 0° to 60°. The absorption coefficient of a material is calculated from the reflection coefficient obtained by reflecting a tone-burst from both a perfectly reflecting panel and a combination of this panel and the sample of the tested material. The tests results show that mineral wool and polyurethane open-cell foam possess very good absorbing properties in this frequency range.


Sign in / Sign up

Export Citation Format

Share Document