scholarly journals CALCULATION AND MODELING OF THE PARAMETERS OF THE INDUCTOR OF THE ELECTRIC APPARATUS WITH THE UNCOORDINATED MOVABLE PART

Keyword(s):  
Author(s):  
S. P. Eron’ko ◽  
M. Yu. Tkachev ◽  
E. V. Oshovskaya ◽  
B. I. Starodubtsev ◽  
S. V. Mechik

Effective application of slag-forming mixtures (SFM), being fed into continuous castingg machine (CCM) moulds, depends on their even distribution on the melt surface. Manual feeding of the SFM which is widely usedd does not provide this condition, resulting in the necessity to actualize the work to elaborate systems of SFM mechanized feedingg into moulds of various types CCM. A concept of the designing of a system of SFM feeding into CCM moulds presented with the ratte strictly correspondent to the casting speed and providing formation of an even layer of fine material of given thickness on the whoole surface of liquid steel. The proposed methods of designing of the SFM mechanized feeding systems based on three-dimensional computer simulation with the subsequent verification of the correctness of the adopted technical solutions on field samples. Informattion is presented on the design features of the adjusted facilities intended for continuous supply of finely granulated and powder mixtuures on metal mirror in moulds at the production of high-quality billets, blooms and slabs. Variants of mechanical and pneumo-mechaanical SFM supply elaborated. At the mechanical supply the fine material from the feeding hopper is moved at a adjusted distance bby a rigid horizontally located screw. At the pneumo-mechanical supply the metered doze of the granular mixture is delivered by a sshort vertical screw, the lower part of which is located in the mixing chamber attached from below to the hopper and equipped with ann ejector serving for pneumatic supply of the SFM in a stream of transporting gas. It was proposed to use flexible spiral screws in the ffuture facilities of mechanical SFM feeding. It will enable to eliminate the restrictions stipulated by the lack of free surface for locatiion of the facility in the working zone of the tundish, as well as to decrease significantly the mass of its movable part and to decreaase the necessary power of the carriage moving mechanism driver. The novelty of the proposed technical solutions is protected by thhree patents. The reduction of 10–15% in the consumption of slag-forming mixtures during the transition from manual to mechanizeed feeding confirmed. The resulting economic effect from the implementation of technical development enables to recoup the costs inncurred within 8–10 months.


Author(s):  
M. F. Alzoubi ◽  
Ma’moun Abu-Ayyad

This paper presents a unique approach for integrating a finite element analysis (FEA) model using a dynamic explicit of Abaqus with a nonlinear process of the mold’s open/close phase in an injection molding machine. This opening/closing phase is considered to have one of the highest impacts on reducing an overall cycle duration since it has no impact on the final part quality. Reducing the overall cycle duration has a big positive impact on productivity and enhancing efficiency of the manufacturing processes of injection molding systems. Therefore, one of the objectives of the injection molding manufacturers is increasing efficiency by reducing the time duration of this phase to a possible minimum. In this work, a 3-dimensional (3D) solid model of the mold, toggle mechanism, and hydraulic cylinder were developed and then superimposed with Abaqus software to animate the motion of the movable part of the mold. The position of the movable part of the mold is traced and used as a controlled variable while the inputted force and initial velocity were considered as the manipulated variables. The innovation of this strategy is that the controller structure uses the nonlinear model to update the process variables at every sampling instant while the closed-loop control is executed. This allows the determination of the plant’s variables resulting in a new set of the controller parameters with every sampling instant.


2000 ◽  
Vol 6 (4) ◽  
pp. 154-156 ◽  
Author(s):  
F. Yi ◽  
E. Tang ◽  
J. Zhang ◽  
D. Xian

2007 ◽  
Vol 4 (12) ◽  
pp. 4643-4646 ◽  
Author(s):  
Chau-Yuan Ke ◽  
Ruey-Shing Huang

2019 ◽  
Vol 16 (4) ◽  
pp. 408-415
Author(s):  
O. Y. Kazakov ◽  
G. V. Kustarev

Introduction. The paper researches the sphere of paving with a roller. The authors describe the current situation in the asphalt concrete’s application as a road surface. Moreover, the authors conduct the excursion into the history of material. The paper presents the preconditions that justify the need for creating recommendations, schemes and methods for experimental study of the working body and material under laboratory conditions of various kinds. The aim of the study is to create the stand concept and methods for experimental research of the roller’s working body in the laboratory.Materials and methods. The paper described a laboratory stand for experiments in the sphere of roller’s working equipment. The authors demonstrated the construction made of a base, a stiffener box, guides and a movable part with a frame and equipment, suspended above the compacted material’s container.Results. As a result, the authors presented the detailed methodology for conducting experiments and recommendations for its transformation in the considered sphere. The paper showed all the necessary data for the design, construction of the test bench and experiments with the roller’s working equipment. Discussion and conclusions. Researchers, especially beginners, receive an additional tool for study of dependencies and phenomena that occur during compaction of material by the roller. Therefore, the authors develops the scheme for the research of the roller’s working body in small area conditions and in extensive laboratories.


2013 ◽  
Vol 284-287 ◽  
pp. 2711-2716
Author(s):  
Yi Hua Fan ◽  
Ching En Chen ◽  
Liao Yong Lou ◽  
Chun Yu Chen

An optical mechanism composed of a movable part and a fixed part for the increment high-resolution optical displacement encoders is proposed in this paper. The parallel light emitted from the movable part passes through a double-concave lens and a specially designed optical grating; it is then projected onto a phototransistor array receiver to indicate the displacement of the movable part. The relationship equation of the lens is developed to design an optical mechanism which can enlarge the displacement so that it becomes observable. Based upon the simulation results, a specially designed optical grating is designed to compensate for the deviations on the detecting surface and to derive the increment movement of the light source. The simulation results indicated that the optical mechanism with 50 times magnification could make the 10 nm movement intervals of a light source be about 500 nm movement intervals in the detecting surface. Furthermore, an experimental system with a 200 nm resolution is established to verify the possibility of the proposed structure.


Author(s):  
Lyubomir Lazov ◽  
Peter Uzunov

In this paper the research results for reducing the detent force in one innovative permanent magnet linear synchronous motor for 2D laser marking system was published. There two methods are used. The first of these methods features the usage of two additional end teeth with chamfers in the magnetic circuit of the movable part. In the second method, the teeth of the ferromagnetic core are with different lengths. As a result of the change of the air gap permeance in both cases substantial reduction of detent force is achieved, in multiples at times. The results obtained are based on modeling and analyzing the linear motor magnetic field by the Finite Element Method (FEM). Provided experimental research of the linear motor prototype proves the correctness of the simulations results.


Sign in / Sign up

Export Citation Format

Share Document