Ultralight design strategies: dall'archetipo al progetto

TERRITORIO ◽  
2018 ◽  
pp. 158-166
Author(s):  
Mickeal Milocco
Keyword(s):  
2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


Author(s):  
Adi Ainurzaman Jamaludin ◽  
Hazreena Hussein ◽  
Nila Keumala ◽  
Ati Rosemary Mohd Ariffin

Dayasari residential college building was designed with the internal courtyard that allows for numerous implementations of bioclimatic design strategies, especially on daylighting. The field measurement was conducted at eight unoccupied student rooms, selected as samples to represent ten scenarios and orientations that concerned with the level of radiation and penetration of sunlight. This study reveals the contribution of the internal courtyard in the residential college which allows the daylight penetration at the corridor areas and interior of the rooms through the transom over the entrance door, up to ten hours daily. Different amounts of daylight were measured in specific room scenarios to suggest on the most comfortable indoor living space. The recorded mean value for indoor varied from 37 to 286 lux, while in the corridor area 192 to 3,848 lux. However, the use of the large overhangs over the windows, wall openings in the room and trees with large canopy in the landscape setting should critically justify when the adequacy of daylight was drastically reduced in certain rooms.    


2018 ◽  
Vol 25 (2) ◽  
pp. 268-286 ◽  
Author(s):  
Maurizio Vurro ◽  
Angela Boari ◽  
Francesca Casella ◽  
Maria Chiara Zonno

Fungal phytotoxins are natural secondary metabolites produced by plant pathogenic fungi during host–pathogen interactions. They have received considerable particular attention for elucidating disease etiology, and consequently to design strategies for disease control. Due to wide differences in their chemical structures, these toxic metabolites have different ecological and environmental roles and mechanisms of action. This review aims at summarizing the studies on the possible use of these metabolites as tools in biological and integrated weed management, e.g. as: novel and environmentally friendly herbicides; lead for novel compounds; sources of novel mechanisms of action. Moreover, the limiting factors for utilizing those metabolites in practice will also be briefly discussed.


2019 ◽  
Vol 25 (42) ◽  
pp. 5803-5821 ◽  
Author(s):  
Mona N. Rahman ◽  
Dragic Vukomanovic ◽  
Jason Z. Vlahakis ◽  
Walter A. Szarek ◽  
Kanji Nakatsu ◽  
...  

The development of isozyme-selective heme oxygenase (HO) inhibitors promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties with a role in several disease states; thus, it is an enticing therapeutic target. Historically, the metalloporphyrins have been used as competitive HO inhibitors based on their structural similarity to the substrate, heme. However, heme’s important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), results in non-selectivity being an unfortunate side effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort over a decade ago to develop novel compounds as potent, selective inhibitors of HO. The result was the creation of the first generation of non-porphyrin based, non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated and provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies. Notably, HO-1 inhibitors are of particular interest for the treatment of hyperbilirubinemia and certain types of cancer. Key features based on this initial study have already been used by others to discover additional potential HO-1 inhibitors. Moreover, studies have begun to use selected compounds and determine their effects in some disease models.


2018 ◽  
Vol 18 (10) ◽  
pp. 837-894 ◽  
Author(s):  
Harbinder Singh ◽  
Jatinder Vir Singh ◽  
Navdeep Kaur ◽  
Mohit Sanduja ◽  
Gurpreet Singh ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 216-230 ◽  
Author(s):  
Abbasali Emamjomeh ◽  
Javad Zahiri ◽  
Mehrdad Asadian ◽  
Mehrdad Behmanesh ◽  
Barat A. Fakheri ◽  
...  

Background:Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs.Objective:The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA’s roles in cellular processes and drugs design, briefly.Method:In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases.Results:The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs.Conclusion:ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ahmed Nuri Kursunlu ◽  
Elif Bastug ◽  
Ersin Guler

Background: Chemosensor compounds are useful for sensitive selective detection of cations and anions with fluorophore groups in an attempt to develop the effective selectivity of the sensors. Although familiar fluorescent sensors utilizing inter-molecular interactions with the cations and anions, an extraordinary endeavor was executed the preparation of fluorescent-based sensor compounds. 4,4-difluoro-4- bora-3a,4a-diaza-s-indacene (Bodipy) and its derivatives were firstly used as an agent in the imaging of biomolecules due to their interesting structures, complexation, and fluorogenic properties. Among the fluorescent chemosensors used for cations and anions, Bodipy-based probes stand out owing to the excellent properties such as sharp emission profile, high stability, etc. In this review, we emphasize the Bodipy-based chemosensor compounds, which have been used to image cations and anions in living cells, because of as well as the biocompatibility and spectroscopic properties. Methods: Research and online content related to chemosensor online activity is reviewed. The advances, sensing mechanisms and design strategies of the fluorophore exploiting selective detection of some cation and anions with Bodipy-based chemosensors are explained. It could be claimed that the using of Bodipy-based chemosensors is very important for cations and anions in bio-imaging applications. Results: Molecular sensors or chemosensors are molecules that show a change can be detected when affected by the analyte. They are capable of producing a measurable signal when they are selective for a particular molecule. Molecular and ion recognition that it is important in biological systems such as enzymes, genes, environment, and chemical fields. Due to the toxic properties of many heavy metal ions, it is of great importance to identify these metals due to their harmful effects on living metabolism and the pollution they create in the environment. This process can be performed with analytical methods based on atomic absorption and emission. The fluorescence methods among chemosensor systems have many advantages such as sensitivity, selectivity, low price, simplicity of using the instrument and direct determination in solutions. The fluorescence studies can be applied at nanomolar concentrations. Conclusion: During a few decades, a lot of Bodipy-based chemosensors for the detection of cations & anions have been investigated in bio-imaging applications. For the Bodipy-based fluorescent chemosensors, the Bodipy derivatives were prepared by different ligand groups for the illumination of the photophysical and photochemical properties. The synthesized Bodipy-based chemosensors have remarkable photophysical properties, such as a high quantum yield, strong molar absorption coefficient etc. Moreover, these chemosensors were successfully implemented on living organisms for the detection of analytes.


2017 ◽  
Vol 17 (1) ◽  
pp. 30-50 ◽  
Author(s):  
Deepak Jain ◽  
Avineesh Singh ◽  
Vijay Patel ◽  
Ravichandran Veerasamy ◽  
Navneet Aggarwal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document