scholarly journals Native seed dispersal by rodents is negatively influenced by an invasive shrub

Author(s):  
A. F. Malo ◽  
A. Taylor ◽  
M. Díaz

Refuge–mediated apparent competition is the mechanism by which invasive plants increase pressure on native plants by providing refuge for generalist consumers. In the UK, the invasive Rhododendron ponticum does not provide food for generalist seed consumers like rodents, but evergreen canopy provides refuge from rodent predators, and predation and pilferage risk are key factors affecting rodent foraging and caching behaviour. Here we used a seed removal/ seed fate experiment to understand how invasion by an evergreen shrub can alter seed dispersal, seed fate and early recruitment of native trees. We used seeds of four species, small and wind–dispersed (sycamore maple Acer pseudoplatanus and European ash Fraxinus excelsior) and large and animal–dispersed (pedunculate oak Quercus robur and common hazel Corylus avellana), and monitored seed predation and caching in open woodland, edge habitats, and under Rhododendron. In the open woodland, wind–dispersed seeds had a higher probability of being eaten in situ than cached seeds, while the opposite occurred with animal–dispersed seeds. The latter were removed from the open woodland and edge habitats and cached under Rhododendron. This pattern was expected if predation risk was the main factor influencing the decision to eat or to cach a seed. Enhanced dispersal towards Rhododendron cover did not increase the prospects for seed survival, as density of hazel and oak saplings under its cover was close to zero as compared to open woodland, possibly due to increased cache pilferage or low seedling survival under dense shade, or both. Enhanced seed predation of ash and sycamore seeds close to Rhododendron cover also decreased recruitment of these trees. Rhododendron patches biased rodent foraging behaviour towards the negative (net predation) side of the conditional rodent / tree interaction. This effect will potentially impact native woodland regeneration and further facilitate Rhododendron spread due to refuge–mediated apparent competition.

2011 ◽  
Vol 278 (1723) ◽  
pp. 3345-3354 ◽  
Author(s):  
Debra M. Wotton ◽  
Dave Kelly

Although global declines in frugivores may disrupt seed dispersal mutualisms and inhibit plant recruitment, quantifying the likely reduction in plant regeneration has been difficult and rarely attempted. We use a manipulative factorial experiment to quantify dependence of recruitment on dispersal (i.e. fruit pulp removal and movement of seed away from parental area) in two large-seeded New Zealand tree species. Complete dispersal failure would cause a 66 to 81 per cent reduction in recruitment to the 2-year-old seedling stage, and synergistic interactions with introduced mammalian seed and seedling predators increase the reduction to 92 to 94 per cent. Dispersal failure reduced regeneration through effects on seed predation, germination and (especially) seedling survival, including distance- and density-dependent (Janzen–Connell) effects. Dispersal of both species is currently largely dependent on a single frugivore, and many fruits today remain uneaten. Present-day levels of frugivore loss and mammal seed and seedling predators result in 57 to 84 per cent fewer seedlings after 2 years. Our study demonstrates the importance of seed dispersal for local plant population persistence, and validates concerns about the community consequences of frugivore declines.


2009 ◽  
Vol 25 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Bright Obeng Kankam ◽  
William Oduro

In tropical forests, most individual fruit-bearing trees depend on frugivores for seed dispersal (Howe & Smallwood 1982, Wilson 1992). Seed dispersal enhances germination potential, provides an opportunity for seeds to escape predation under the parent plants, and reduces seedling numbers under parent trees (Şekercioğluet al. 2004). The way frugivores handle seeds and process them may influence the seed fate of many plants (Janzen 1971). The quantity of seeds dispersed and the quality of dispersal provided by frugivores impact plant fitness (Herrera & Jordano 1981). Schupp (1993) defined the effectiveness of seed dispersal by frugivores as an empirical measure of quantity of seeds dispersed and quality of dispersal from the parent plant to a suitable microsite. Seed dispersal by frugivores increases the chances for seedling survival away from the vicinity of the parent plant because in tropical forests seed predation is concentrated under adult trees that prevent seedlings from establishing near parent trees (Howe & Miriti 2004).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Fujita

AbstractThis study examined the mechanisms of facilitation and importance of seed dispersal during establishment of forest tree species in an Afrotropical woodland. Seedling survival of Syzygium guineense ssp. afromontanum was monitored for 2.5 years at four different microsites in savannah woodland in Malawi (southeastern Africa) under Ficus natalensis (a potential nurse plant), Brachystegia floribunda (a woodland tree), Uapaca kirkiana (a woodland tree), and at a treeless site. The number of naturally established forest tree seedlings in the woodland was also counted. Additionally, S. guineense ssp. afromontanum seed deposition was monitored at the four microsites. Insect damage (9% of the total cause of mortality) and trampling by ungulates (1%) had limited impact on seedling survival in this area. Fire (43%) was found to be the most important cause of seedling mortality and fire induced mortality was especially high under U. kirkiana (74%) and at treeless site (51%). The rate was comparatively low under F. natalensis (4%) and B. floribunda (23%), where fire is thought to be inhibited due to the lack of light-demanding C4 grasses. Consequently, seedling survival under F. natalensis and B. floribunda was higher compared with the other two microsites. The seedling survival rate was similar under F. natalensis (57%) and B. floribunda (59%). However, only a few S. guineense ssp. afromontanum seedlings naturally established under B. floribunda (25/285) whereas many seedlings established under F. natalensis (146/285). These findings indicate that the facilitative mechanism of fire suppression is not the only factor affecting establishment. The seed deposition investigation revealed that most of the seeds (85%) were deposited under F. natalensis. As such, these findings suggest that in addition to fire suppression, dispersal limitations also play a role in forest-savannah dynamics in this region, especially at the community level.


1988 ◽  
Vol 18 (10) ◽  
pp. 1226-1233 ◽  
Author(s):  
Jeremy S. Fried ◽  
John C. Tappeiner II ◽  
David E. Hibbs

Survival, age and height distributions, and stocking of bigleaf maple (Acermacrophyllum Pursh) seedlings were studied in 1- to 250-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands in western Oregon to identify the stages in stand development in which bigleaf maple is most likely to establish successfully from seed. Maple seedling emergence averaged 30–40% where seeds were planted and protected from rodents but was typically <2% for unprotected seeds. Seedling survival after 2 years was highly dependent on canopy density, measured by percent sky. Average 1st-year survival of seedlings originating from planted, protected seeds was highest in clearcuts (1–2 years old, 36% survival, 56% sky) and pole-size stands (41–80 years old, 30% survival, 17% sky) with sparse understories and canopies. It was lowest in young stands with dense canopies (20–40 years old, 4% survival, 8% sky) and old stands (81–250 years old, 14% survival, 13% sky) with dense understories. Naturally regenerated populations of bigleaf maple seedlings, which occurred in aggregations (0.005–0.04 ha in area), were most abundant (up to 10 000/ha) in pole-size Douglas-fir stands. Although seedling size distributions within stands had a strongly inverse J shaped form, size distributions within aggregations appeared more normal (bell-shaped). Seedling age rarely exceeded 15 years. Seedlings grew slowly in the understory, often reaching only 25 cm in height after 8–10 years, and were intensively browsed by deer. Naturally regenerated seedlings were virtually absent from clearcuts, probably because of dense competing vegetation and lack of seed caused by poor dispersal and seed predation. The "window" for the most successful establishment of bigleaf maple seedlings appears to begin after canopy thinning and end before forbs and shrubs invade.


1996 ◽  
Vol 12 (3) ◽  
pp. 345-356 ◽  
Author(s):  
Maxine F. Miller

ABSTRACTThe dispersal of AfricanAcaciaseeds in the presence and absence of large mammalian herbivores and ostriches was assessed in a savanna ecosystem in South Africa. In the absence of large herbivores,A. tortilisandA. niloticapods were mainly dispersed in the shade, directly beneath the tree crown and seeds remained in pods for over 18 months. In the presence of large herbivores,A. tortilis, A. niloticaandA. karrooseeds were freed from pods and were dispersed into open, non-shaded habitats. Impala dispersed mostA. tortilisseeds (18,900 ha−1), giraffe mostA. niloticaseeds (1060 ha−1) and giraffe and kudu mostA. karrooseeds (452 and 448 ha−1, respectively). Seedling survival in dung in open environments may exceed that of seedlings in soil shaded beneath the tree crown. It appears that seed dispersal by large herbivores may be advantageous to future seedling recruitment.


2018 ◽  
Vol 11 (3) ◽  
pp. 117-126 ◽  
Author(s):  
Zhaofei Fan ◽  
Shaoyang Yang ◽  
Xia Liu

AbstractChinese tallowtree [Triadica sebifera(L.) Small] has reached unprecedented prevalence in coastal landscapes in the Gulf of Mexico, especially along edge habitat with low competition and abundant resource (e.g., light) availability. This study investigated the spatiotemporal patterns and mechanisms ofT. sebiferaspread along roadways and fire lines.Triadica sebiferaindividuals and landscape and community features were surveyed in equally spaced, spatially mapped plots. AllT. sebiferaindividuals were felled to determine tree age and status (seed trees or non-seed bearing trees), andT. sebiferaseed and seedling (≤2 yr old) densities and community and landscape features (over- and understory conditions, distance to seed trees) were measured. A zero-inflated negative binomial model was used to evaluate factors affectingT. sebiferaseed dispersal and seedling recruitment contributing to the observed spatiotemporal patterns. Introduced into the Grand Bay National Wildlife Refuge around 30 yr ago,T. sebiferatrees distribute in clustered patterns along roadways and fire lines and exhibit an exponential growth in density. HighT. sebiferaseed and seedling densities mainly occurred in sites that are ≤250 m from seed trees or have sparse overstory and high understory grass/herb coverage. With respect to the avian seed dispersal mechanism, the spatiotemporal patterns ofT. sebiferaspread along roadways and fire lines could be simply characterized by using landscape and community features that influence avian behaviors, including distance to seed trees, overstory tree density, and ground grass/herb coverage.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1492
Author(s):  
Diego Muñoz-Concha ◽  
Karla Muñoz ◽  
Andrea P. Loayza

Megafaunal seed dispersal syndrome refers to a group of traits attributed to the evolution of plants in the presence of large mammals. Present-day plants that bear these traits in areas where megafauna are absent are presumed to represent anachronic dispersal systems. Gomortega keule is an endangered tree species from a monotypic family (Gomortegaceae), endemic to Chile. Its fruit traits suggest adaptation to seed dispersal by large vertebrates; however, none are present today along its area of distribution. Here, we conducted a detailed revision on the fruit morphology of G. keule to examine whether its fruit traits fit a megafaunal dispersal syndrome. Additionally, we examined the fruit processing behavior of large domestic and captive wild animals fed with G. keule fruits, and its effect on germination. G. keule fruits had traits consistent with those of a Type 1 megafaunal fruit. Compared to intact, whole stones, seed germination probabilities decreased when fruits were handled by animals, suggesting that the seed was damaged during mastication and/or ingestion. Moreover, results from our feeding trials with elephants may also imply low efficiency of extinct gomphotheres as seed dispersers of this species. Our results also suggest that although domestic animals may disperse G. keule, it is unlikely that at present they can substitute the services of its original dispersers. Further investigation on seedling survival, local livestock management and forest management practices may help reinstate sexual regeneration in G. keule. Finally, integrating observations on fruit ecology and local people’s knowledge with experimental data enriches our species-centered approach and may help to address regeneration problems in other endangered plants.


2004 ◽  
Vol 20 (5) ◽  
pp. 545-553 ◽  
Author(s):  
Shumpei Kitamura ◽  
Takakazu Yumoto ◽  
Pilai Poonswad ◽  
Naohiko Noma ◽  
Phitaya Chuailua ◽  
...  

Following the entire process of frugivore seed dispersal, from intake of seeds to seed deposition, is a difficult task. One alternative is to monitor areas of heavy seed rain deposited by animals. We quantified the number of seeds deposited by hornbills and followed the fates of these seedlings for 3 y to evaluate the effectiveness of hornbill seed dispersal at nest trees, on the basis of seedling survival. For 14 mo, fallen fruits and seeds were collected in traps established around four nest trees of each of two hornbill species (Aceros undulatus and Anthracoceros albirostris) and the seedlings were monitored in adjacent quadrats. Seedfall and seedlings of species represented in hornbill diets occurred at significantly higher densities in the traps/quadrats in front of nest cavities than in other traps/quadrats. Fewer seedling species and individuals germinated under nest trees than expected from the composition of the seedfall. Our results suggest that the quality of hornbill seed dispersal might be poor at nest trees due to the highly concentrated seedfall, which results in high seed and seedling mortality. Although seed deposition at nest trees is a useful guide to hornbill diet during the breeding season, it is clearly not of benefit to the plants involved. However, the pattern and consequences of hornbill seed dispersal at nest sites is likely very different from that during the non-breeding season.


Sign in / Sign up

Export Citation Format

Share Document