scholarly journals ADJUSTMENT OF FUZZY ADAPTIVE REGULATOR OF COMPRESSOR UNIT FOR LIQUEFACTION OF NATURAL GAS

Author(s):  
M.V. Vasyliev
2021 ◽  
Vol 295 (2) ◽  
pp. 187-192
Author(s):  
Mykhailo Vasyliev ◽  
◽  
Brunetkin Oleksandr ◽  

The main properties of the object are studied, as well as the methods by which new parameters can be found for the regulator of the compressor unit for liquefaction of natural gas. The main properties of the adaptive regulator itself are studied, as well as the method by which the work was performed is developed. A comparison was also made with other types of automatic control systems that can be used in this facility. The sequence of construction of the adaptive controller and its interaction with the object is studied. The initial results of the adaptive controller and their comparison with other automatic control systems are investigated. The general properties and rules of construction of the adaptive regulator, the basic subtleties at work with it are studied. New possibilities for regulation of the compressor installation for liquefaction of natural gas are fully considered and the basic rules concerning application of this adaptive regulator are deduced. A study of the effectiveness of the adaptive regulator for this object was conducted and conclusions were made on the work of the regulator and the effectiveness of its results. A special sequence of work was also developed for the construction of an adaptive controller and its application on site. In general, the basic rules for working with such a regulator and its application in a natural gas liquefaction plant are derived. The behavior of the plant is investigated and new settings for the regulation of the natural gas liquefaction plant are derived. The main types of regulation of this object are applied and new rules for finding settings for the main regulator of the compressor unit are derived. The work on comparison of already traditional types of regulation with the adaptive regulator is made and conclusions on application of this or that type of regulation of compressor installation comparing results of regulation are made. The possibility of real use of this regulator on a constant basis in production is investigated, conclusions on the main work of the regulator and also shortcomings which can arise at a choice of regulation with the adaptive regulator are made.


Author(s):  
A. L. Syner ◽  
D. A. Brown

The final phase of the development program of 3000-hp turbine included an inservice field evaluation. El Paso Natural Gas Co. shared in this phase by installing one of the two prototype units in gas transmission service. This paper describes the unit and its application and reviews the first year’s operation including inspections, tests and modifications.


Author(s):  
I. D. Obukhov ◽  

This paper presents the methodology and results of optimization of the waste heat recovery system (WHRS) of a mobile compressor unit (MCU) designed to compress natural gas using a computer model in the MatLab with the CoolProp thermodynamic package. In the course of the study, a computer model of the WHRS is built, a criterion for the efficiency of recuperation is determined, an optimization problem is formulated and its solution is carried out. The boiling pressure and mass flow rate of the working fluid in the Rankine cycle are taken as the optimization parameters. With the optimal values of these parameters, the smallest value of the relative mass fuel consumption of the MCU is achieved, that is, the maximum recuperation efficiency is achieved.


Inventions ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Victor Bolobov ◽  
Yana Vladimirovna Martynenko ◽  
Vladimir Voronov ◽  
Ilnur Latipov ◽  
Grigory Popov

The production, transportation, and storage of liquefied natural gas (LNG) is a promising area in the gas industry due to a number of the fuel’s advantages, such as its high energy intensity indicators, its reduced storage volume compared to natural gas in the gas-air state, and it ecological efficiency. However, LNG storage systems feature a number of disadvantages, among which is the boil-off gas (BOG) recovery from an LNG tank by flaring it or discharging it to the atmosphere. Previous attempts to boil-off gas recovery using compressors, in turn, feature such disadvantages as large capital investments and operating costs, as well as low reliability rates. The authors of this article suggest a technical solution to this problem that consists in using a gas ejector for boil-off gas recovery. Natural gas from a high-pressure gas pipeline is proposed as a working fluid entraining the boil-off gas. The implementation of this method was carried out according to the developed algorithm. The proposed technical solution reduced capital costs (by approximately 170 times), metal consumption (by approximately 100 times), and power consumption (by approximately 55 kW), and improved the reliability of the system compared to a compressor unit. The sample calculation of a gas ejector for the boil-off gas recovery from an LNG tank with a capacity of 300 m3 shows that the ejector makes it possible to increase the boil-off gas pressure in the system by up to 1.13 MPa, which makes it possible to not use the first-stage compressor unit for the compression of excess vapours.


1886 ◽  
Vol 21 (545supp) ◽  
pp. 8698-8699
Author(s):  
S. A. Ford
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document