scholarly journals Throughput Maximization Based on Optimal Access Probabilities in Cognitive Radio System

2021 ◽  
Author(s):  
Lian Zhao

Well-established fact shows that the fixed spectrum allocation policy conveys to the low spectrum utilization. The cognitive radio technique promises to improve the low efficiency. This paper proposes an optimized access strategy combining overlay scheme and underlay scheme for the cognitive radio. We model the service state of the system as a continuous-time Markov model. Based on the service state, the overlay manner or/and the underlay manner is/are used by the secondary users. When the primary user is not transmitting and only one secondary user has the requirement to transmit, the secondary system adopts the overlay scheme. When the primary user is transmitting and the secondary users want to transmit simultaneously, an underlay scheme with an access probability is adopted. We obtain the optimal access probability in a closed form which maximizes the overall system throughput

2021 ◽  
Author(s):  
Lian Zhao

Well-established fact shows that the fixed spectrum allocation policy conveys to the low spectrum utilization. The cognitive radio technique promises to improve the low efficiency. This paper proposes an optimized access strategy combining overlay scheme and underlay scheme for the cognitive radio. We model the service state of the system as a continuous-time Markov model. Based on the service state, the overlay manner or/and the underlay manner is/are used by the secondary users. When the primary user is not transmitting and only one secondary user has the requirement to transmit, the secondary system adopts the overlay scheme. When the primary user is transmitting and the secondary users want to transmit simultaneously, an underlay scheme with an access probability is adopted. We obtain the optimal access probability in a closed form which maximizes the overall system throughput


2021 ◽  
Vol 10 (4) ◽  
pp. 2046-2054
Author(s):  
Mohammed Mehdi Saleh ◽  
Ahmed A. Abbas ◽  
Ahmed Hammoodi

Due to the rapid increase in wireless applications and the number of users, spectrum scarcity, energy consumption and latency issues will emerge, notably in the fifth generation (5G) system. Cognitive radio (CR) has emerged as the primary technology to address these challenges, allowing opportunist spectrum access as well as the ability to analyze, observe, and learn how to respond to environmental 5G conditions. The CR has the ability to sense the spectrum and detect empty bands in order to use underutilized frequency bands without causing unwanted interference with legacy networks. In this paper, we presented a spectrum sensing algorithm based on energy detection that allows secondary user SU to transmit asynchronously with primary user PU without causing harmful interference. This algorithm reduced the sensing time required to scan the whole frequency band by dividing it into n sub-bands that are all scanned at the same time. Also, this algorithm allows cognitive radio networks (CRN) nodes to select their operating band without requiring cooperation with licensed users. According to the BER, secondary users have better performance compared with primary users.


Cognitive radio network is a promising technology for enabling secondary users to utilize the licensed spectrum of the primary user without causing interference. The data trans- mitted by the secondary users through primary channel without affecting the primary user is known as channel throughput. In cooperative spectrum sensing(CSS) as the number of secondary users increases the channel throughput increases which in turn reduces the spectrum efficiency due to more spectrum wastage. Therefore in this paper, channel throughput is maximized by optimizing secondary users proposed and throughput for variable secondary users for OR and AND fusion rules is investigated. The optimal secondary users is estimated mathematically and simulation results shows the variation of throughput for variable number of secondaryusers


2017 ◽  
Vol 10 (04) ◽  
pp. 765-772 ◽  
Author(s):  
Nisar Lala ◽  
Altaf Balkhi ◽  
G M Mir

Cognitive radio (CR) is a promising solution to improve the spectrum utilization by enabling unlicensed users to exploit the spectrum in an opportunistic manner. Spectrum handoff is a different type of handoff in CR necessitated by the reappearance of primary user (PU) in the licensed band presently occupied by the secondary users (SUs). Spectrum handoff procedures aim to help the SUs to vacate the occupied licensed spectrum and find suitable target channel to resume the unfinished transmission. The purpose of spectrum mobility management in cognitive radio networks is to make sure that the transitions are made smoothly and rapidly such that the applications running on a cognitive user perceive minimum performance degradation during a spectrum handoff. In this paper, we will survey the literature on spectrum handoff in cognitive radio networks.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Zhao ◽  
Wen Wang ◽  
Hongbin Chen

Interference alignment (IA) is an effective technique to eliminate the interference among wireless nodes. In a multiinput multi-output (MIMO) cognitive radio system, multiple secondary users can coexist with the primary user without generating any interference by using the IA technology. However, few works have considered the fairness of secondary users. In this paper, not only is the interference eliminated by IA, but also the fairness of secondary users is considered by two kinds of algorithms. Without losing generality, one primary user andKsecondary users are considered in the network. Assuming perfect channel knowledge at the primary user, the interference from secondary users to the primary user is aligned into the unused spatial dimension which is obtained by water-filling among primary user. Also, the interference between secondary users can be eliminated by a modified maximum signal-to-interference-plus-noise algorithm using channel reciprocity. In addition, two kinds of fairness algorithms, max-min fairness and proportional fairness, among secondary users are proposed. Simulation results show the effectiveness of the proposed algorithms in terms of suppressed interference and fairness of secondary nodes. What is more, the performances of the two fairness algorithms are compared.


2018 ◽  
Vol 14 (2) ◽  
pp. 155014771875921
Author(s):  
Yibing Li ◽  
Xueying Diao ◽  
Qianhui Dong ◽  
Chunrui Tang

This article aims to optimize the information rate of a cognitive radio network with multiple secondary users. A primary user rate optimization approach based on dichotomy of the degree of freedom is proposed, where the primary users’ eigenmodes are adjusted according to its rate requirement. In order to provide a higher sum rate of secondary users, two interference alignment schemes are presented. The first one is an interference sub-space alignment scheme, which aims to align the sub-spaces spanned by interference from other secondary users with the sub-space spanned by interference from primary user. However, interference sub-space alignment may not be favorable in low signal-to-interference ratio region due to the negligence of the influence of noise. Thus, an iterative interference alignment scheme which maximizes the secondary system sum rate based on Grassmann manifold is developed. To accelerate the convergence speed, the objective function in Grassmann manifold is transformed into two parts without the inversion operation using the extensions of the Minkowski inequality. Simulation results show that interference sub-space alignment is more effective than Grassmann manifold to mitigate interference in the system with more secondary users. We further validate the effectiveness of Grassmann manifold and interference sub-space alignment in comparison with the existing schemes employing a water filling algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1146
Author(s):  
Kaitian Cao ◽  
Ping Qian

Spectrum handoff is one of the key techniques in a cognitive radio system. In order to improve the agility and the reliability of spectrum handoffs as well as the system throughput in hybrid cognitive radio networks (HCRNs) combing interweave mode with underlay mode, a predictive (or proactive) spectrum handoff scheme based on a deep Q-network (DQN) for HCRNs is proposed in this paper. In the proposed spectrum handoff approach, spectrum handoff success rate is introduced into an optimal spectrum resource allocation model to ensure the reliability of spectrum handoff, and the closed-form expression for the spectrum handoff success rate is obtained based on the Poisson distribution. Furthermore, we exploit the transfer learning strategy to further improve the DQN learning process and finally achieve a priority sequence of target available channels for spectrum handoffs, which can maximize the overall HCRNs throughput while satisfying constraints on secondary users’ interference with primary user, limits on the spectrum handoff success rate, and the secondary users’ performance requirements. Simulation results show that the proposed spectrum handoff scheme outperforms the state-of-the-art spectrum handoff algorithms based on predictive decision in terms of the convergence rate, the handoff success rate and the system throughput.


2014 ◽  
Vol 556-562 ◽  
pp. 2802-2805
Author(s):  
Fu Lai Liu ◽  
Shou Ming Guo ◽  
Rui Yan Du

Spectrum sensing is a key technology to reliably detect spectrum holes in multi-dimensions for cognitive radio networks. In this paper, a joint spatial-temporal spectrum sensing scheme is proposed. First of all, the secondary users (SUs) located inside the primary exclusive region (PER) perform temporal sensing. When the primary user (PU) is present, the SUs located outside the PER perform spatial spectrum sensing. The proposed method can improve the spectrum utilization by exploiting both temporal and spatial spectrum holes. The achievable throughput for the secondary network of joint spatial-temporal sensing is higher than that of pure temporal sensing. Simulation results demonstrate the effectiveness of the proposed approach.


2021 ◽  
Author(s):  
Garima Singh ◽  
Gurjit Kaur

Abstract In this paper, single and multi-user coded-cooperation based cognitive radio system is developed by designing its mathematical model where both source and relay will communicate to a single destination with the help of each other. Then all possible multi-user scenarios are developed and their end-to-end outage probability (Pout) is calculated for underlay mode of cognitive radio. The performance of the system is analyzed in the form of channel gain and interference temperature constraint for Rayleigh fading channel. The proposed system concludes that the coded cooperation with cognitive radio outperform the available techniques in the form of bandwidth, diversity, spectrum utilization efficiency and also improves the quality of communication. Furthermore, the theoretical analysis of the outage probability for both system models is validated by asymptotic analysis. The proposed system can set as a standard for all those cognitive radio applications which requires better spectrum efficiency even if there is a scarcity of multiple physical antennas.


Sign in / Sign up

Export Citation Format

Share Document