scholarly journals Passively Enhanced Natural Convection Heat Transfer via Swirl Effect

Author(s):  
L. Di Liddo ◽  
D. Naylor

A numerical and experimental study, in the preliminary stages, has been conducted examining the effect of swirling flow on the natural convective heat transfer rate from a flat, horizontal, heated, upward facing, isothermal circular disk surrounded by insulation.

2021 ◽  
Author(s):  
L. Di Liddo ◽  
D. Naylor

A numerical and experimental study, in the preliminary stages, has been conducted examining the effect of swirling flow on the natural convective heat transfer rate from a flat, horizontal, heated, upward facing, isothermal circular disk surrounded by insulation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kun Zhang ◽  
Yu Zhang ◽  
Xiaoyu Wang ◽  
Liangbi Wang

Detailed numerical calculations are performed for investigating the effect of fin number and position on unsteady natural convection heat transfer in internally finned horizontal annulus. The SIMPLER algorithm with Quick scheme is applied for solving the Navier Stokes equations of flow and heat transfer. The results show that the heat transfer rate in annulus with fins increases with the increasing numbers of fin and Rayleigh numbers. For Ra = 2 × 105, the effect of numbers of fins and fins position at the bottom part on the unsteady solutions can be neglected, because the self-oscillation phenomenon is mainly affected by natural convection at the upper part of annulus. Although the fin positions cannot increase heat transfer rate significantly in the case of four fins, the self-oscillated solutions can be suppressed by altering fins position.


Sign in / Sign up

Export Citation Format

Share Document