scholarly journals Analytical modeling of the contact pressure at the steel-concrete interface

Author(s):  
Sini Bhaskar

This research studies the effect of corrosion on bond strength at the steel-concrete interface in a reinforced concrete member. Bond stress, which can be defined as the shear stress which develops along the lateral surface of the bar, is expressed as a function of contact pressure at the steel-concrete interface. An analytical model of bond which describes the contact pressure between the reinforcing bar and concrete in a reinforced concrete member is developed. The expression for the reduction in contact pressure due to the accumulation of corrosion products is then developed using the model developed for the uncorroded reinforcing steel bar. The developed analytical model was implemented in a finite element analysis, which was conducted using ABAQUS, of pull-out specimens conducted by Amleh (2000). A reasonable good agreement between the experimental and finite element analysis results was obtained.

2021 ◽  
Author(s):  
Sini Bhaskar

This research studies the effect of corrosion on bond strength at the steel-concrete interface in a reinforced concrete member. Bond stress, which can be defined as the shear stress which develops along the lateral surface of the bar, is expressed as a function of contact pressure at the steel-concrete interface. An analytical model of bond which describes the contact pressure between the reinforcing bar and concrete in a reinforced concrete member is developed. The expression for the reduction in contact pressure due to the accumulation of corrosion products is then developed using the model developed for the uncorroded reinforcing steel bar. The developed analytical model was implemented in a finite element analysis, which was conducted using ABAQUS, of pull-out specimens conducted by Amleh (2000). A reasonable good agreement between the experimental and finite element analysis results was obtained.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 293
Author(s):  
Alinda Dey ◽  
Domas Valiukas ◽  
Ronaldas Jakubovskis ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document