scholarly journals Design And Development Of Power And Attitude Control Subsystems For RYESAT

Author(s):  
Michael William Richard. Alger

This thesis describes the design and development of Ryerson University's first CubeSat (RyeSat) with a focus on power and attitude control subsystems. This satellite is intended to become the initial of a series of CubeSats built by Ryerson University to perform research in spacecraft control algorithms and actuators. RyeSat is built around a standard interface, which specifies both a data-bus and a switchable power supply system for non critical systems. To facilitate the development of this satellite a prototype power subsystem was created, programmed and tested. In addition to developing the system's architecture and power subsystem; analysis was preformed to size both reaction wheels and magnetic torquers. This analysis showed that a commercially available motor could be adapted to fulfill the attitude control requirements of a CubeSat and also showed that miniature magnetic torque rods would be more efficient that magnetic torque coils typically used on CubeSats. Finally, control laws for these actuators were designed and an adaptive nonlinear sliding mode controller for reaction wheels was applied to control the 3-axis attitude motion of RyeSat.

2021 ◽  
Author(s):  
Michael William Richard. Alger

This thesis describes the design and development of Ryerson University's first CubeSat (RyeSat) with a focus on power and attitude control subsystems. This satellite is intended to become the initial of a series of CubeSats built by Ryerson University to perform research in spacecraft control algorithms and actuators. RyeSat is built around a standard interface, which specifies both a data-bus and a switchable power supply system for non critical systems. To facilitate the development of this satellite a prototype power subsystem was created, programmed and tested. In addition to developing the system's architecture and power subsystem; analysis was preformed to size both reaction wheels and magnetic torquers. This analysis showed that a commercially available motor could be adapted to fulfill the attitude control requirements of a CubeSat and also showed that miniature magnetic torque rods would be more efficient that magnetic torque coils typically used on CubeSats. Finally, control laws for these actuators were designed and an adaptive nonlinear sliding mode controller for reaction wheels was applied to control the 3-axis attitude motion of RyeSat.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chutiphon Pukdeboon

The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC) is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE) and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.


Author(s):  
Chengbao Zhou ◽  
Di Zhou

The nonlinear attitude motion equations of flexible spacecraft described by the Euler angles are expressed in the vector form. Based on dynamic surface control, a new robust dynamic surface sliding mode controller is proposed for the attitude tracking and active vibration suppression of flexible spacecraft in the presence of parameter uncertainty and external disturbances. Then, a novel robust dynamic surface finite time sliding mode controller is proposed with an extended state observer such that the uncertainties can be estimated. Lyapunov stability analyses show that the two controllers can guarantee the asymptotical stability of the attitude control system. The undesirable vibration of flexible spacecraft is also actively suppressed by the modal velocity feedback approach. Finally, simulation results verified the effectiveness of the presented control algorithms.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


Sign in / Sign up

Export Citation Format

Share Document