scholarly journals A Nondestructive Study Of A Carbon Fibre Epoxy Composite Plate Using Lock-In Thermography, Cyclic Loading, And Finite Element Analysis

Author(s):  
Muhammad Saleem

The goal of this study was to validate the results from infrared thermographic experiment by strain gauge experiments and finite element analysis (FEA) in a carbon epoxy composite plate within the linear elastic limit. A FE model of the plate was first developed and subjected to static loads. The strain values were recorded at four distinct points. Then an experiment using strain gauges was carried out for similar loading conditions and the strains were noted for the corresponding locations. The slope of the correlation plot between the FEA and strain gauge static results indicated that, although the strain gauge experimental values had an overall tendency to overestimate the strain, there was a strong correlation between the data as exhibited by the Pearson coefficient R² = 0.99. Then the stresses calculated from the strain gauge experiment under cyclic tensile loads were used to validate the results from lock-in thermography. These results also showed good agreement as R² was 0.87 and strain gauges experiement tended to underestimate the stress values. From this study, it can be concluded that lock-in thermography can be used to assess stresses in biomaterials used in medical application.

2021 ◽  
Author(s):  
Muhammad Saleem

The goal of this study was to validate the results from infrared thermographic experiment by strain gauge experiments and finite element analysis (FEA) in a carbon epoxy composite plate within the linear elastic limit. A FE model of the plate was first developed and subjected to static loads. The strain values were recorded at four distinct points. Then an experiment using strain gauges was carried out for similar loading conditions and the strains were noted for the corresponding locations. The slope of the correlation plot between the FEA and strain gauge static results indicated that, although the strain gauge experimental values had an overall tendency to overestimate the strain, there was a strong correlation between the data as exhibited by the Pearson coefficient R² = 0.99. Then the stresses calculated from the strain gauge experiment under cyclic tensile loads were used to validate the results from lock-in thermography. These results also showed good agreement as R² was 0.87 and strain gauges experiement tended to underestimate the stress values. From this study, it can be concluded that lock-in thermography can be used to assess stresses in biomaterials used in medical application.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 209
Author(s):  
Venkatachalam Gopalan ◽  
Vimalanand Suthenthiraveerappa ◽  
A. Raja Annamalai ◽  
Santhanakrishnan Manivannan ◽  
Vignesh Pragasam ◽  
...  

Due to the growing environmental awareness, the development of sustainable green composites is in high demand in composite industries, mainly in the automotive, aircraft, construction and marine applications. This work was an attempt to experimentally and numerically investigate the dynamic characteristics of Woven Flax/Bio epoxy laminated composite plates. In addition, the optimisation study on the dynamic behaviours of the Woven Flax/Bio epoxy composite plate is carried out using the response surface methodology (RSM) by consideration of the various parameters like ply orientation, boundary condition and aspect ratio. The elastic constants of the Woven Flax/Bio epoxy composite lamina needed for the numerical simulation are determined experimentally using two methods, i.e., the usual mechanical tests as well as through the impulse excitation of vibration-based approach and made a comparison between them. The numerical analysis on the free vibration characteristics of the composite was carried out using ANSYS, a finite element analysis (FEA) software. The confirmation of the FE model was accomplished by comparing the numerical results with its experimental counterpart. Finally, a comparison was made between the results obtained through the regression equation and finite element analysis.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


Author(s):  
Phong Phan ◽  
Anh Vo ◽  
Amirhamed Bakhtiarydavijani ◽  
Reuben Burch ◽  
Brian K. Smith ◽  
...  

Abstract Computational approaches, especially Finite Element Analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a "go-to" high biofidelic software tool to simulate and quantify the biomechanics of the foot-ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot-ankle complex. First, a brief history of computational modeling methods and Finite Element (FE) simulations for foot-ankle models is introduced. Second, a general approach to build a FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate a FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Lastly, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot-ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot-ankle FE models in the future.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


Sign in / Sign up

Export Citation Format

Share Document