scholarly journals Determination of concentration-dependent dispersion of propane in vapor extraction of heavy oil

Author(s):  
Hadil Abukhalifeh

Vapex (vapor extraction) is a solvent-based non-thermal in-situ heavy oil recovery process. In Vapex process, a vaporized hydrocarbon solvent is injected into an upper horizontal well where the solvent mixes with the heavy oil and reduces its viscosity. The diluted oil drains under gravity to a bottom production well. Two mechanisms control the production rates of heavy oil in Vapex: mass transfer of solvent into heavy oil, and gravity drainage. Both are governed by dispersion, which is composed of molecular diffusion, convection, and other mechanisms that enhance mixing in porous medium. The accurate determination of solvent dispersion in Vapex is essential to predict effectively the amount and time scale of oil recovery as well to optimize the field operations. Motivated by limited dispersion data in the literature, a novel technique is developed to determine experimentally the concentration-dependent dispersion coefficient of propane in Vapex process, The technique employs live oil production rates obtained from Vapex experiments at 21ºC and 0.790 MPa. The salient feature of this technique is that it does not impose any functional form on dispersion as a function of concentration, but allows its natural and realistic determination. The technique could be applied to determine other solvents dispersion coefficient used in the in-situ recovery of heavy oil. Propane dispersion coefficient is determined by the minimization of the difference in experimental and calculated cumulative live oil produced. The necessary conditions for the minimum are fundamentally derived, utilizing the theory of optimal control. A computational algorithm is formulated to calculate the propane dispersion function simultaneously with propane-heavy oil interface mass fraction. Physical models of glass beads of different permeabilities (204-51 Darcy) and drainage heights (25-45 cm) were used to conduct the Vapex experiments. The results show that dispersion of propane is a unimodal function of its concentration in heavy oil, and lies in the range, 0.5x10⁻⁵- 7.933x10⁻⁵ m²/s. Convectional mixing is promoted by higher model drainage heights and lower permeability. Finally, propane dispersion is correlated as a function of propane mass fraction in heavy oil and the packed medium permeability, as well as the drainage height.

2021 ◽  
Author(s):  
Hadil Abukhalifeh

Vapex (vapor extraction) is a solvent-based non-thermal in-situ heavy oil recovery process. In Vapex process, a vaporized hydrocarbon solvent is injected into an upper horizontal well where the solvent mixes with the heavy oil and reduces its viscosity. The diluted oil drains under gravity to a bottom production well. Two mechanisms control the production rates of heavy oil in Vapex: mass transfer of solvent into heavy oil, and gravity drainage. Both are governed by dispersion, which is composed of molecular diffusion, convection, and other mechanisms that enhance mixing in porous medium. The accurate determination of solvent dispersion in Vapex is essential to predict effectively the amount and time scale of oil recovery as well to optimize the field operations. Motivated by limited dispersion data in the literature, a novel technique is developed to determine experimentally the concentration-dependent dispersion coefficient of propane in Vapex process, The technique employs live oil production rates obtained from Vapex experiments at 21ºC and 0.790 MPa. The salient feature of this technique is that it does not impose any functional form on dispersion as a function of concentration, but allows its natural and realistic determination. The technique could be applied to determine other solvents dispersion coefficient used in the in-situ recovery of heavy oil. Propane dispersion coefficient is determined by the minimization of the difference in experimental and calculated cumulative live oil produced. The necessary conditions for the minimum are fundamentally derived, utilizing the theory of optimal control. A computational algorithm is formulated to calculate the propane dispersion function simultaneously with propane-heavy oil interface mass fraction. Physical models of glass beads of different permeabilities (204-51 Darcy) and drainage heights (25-45 cm) were used to conduct the Vapex experiments. The results show that dispersion of propane is a unimodal function of its concentration in heavy oil, and lies in the range, 0.5x10⁻⁵- 7.933x10⁻⁵ m²/s. Convectional mixing is promoted by higher model drainage heights and lower permeability. Finally, propane dispersion is correlated as a function of propane mass fraction in heavy oil and the packed medium permeability, as well as the drainage height.


2021 ◽  
Author(s):  
Hadil Abukhalifeh ◽  
Ali Lohi ◽  
Simant Ranjan Upreti

Vapex (vapor extraction of heavy oil and bitumen) is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen.


2001 ◽  
Vol 4 (01) ◽  
pp. 51-58
Author(s):  
R.L. Garnett

Summary This paper describes a single-well pilot in which light-oil diluent was injected through tubing to lower in-situ oil viscosity and increase production from a low-gravity oil well. The pilot well is located on the Heritage platform in the Santa Ynez Unit and produces from the Monterey formation. The pilot validated laboratory data suggesting that large production-rate increases could result from high-rate diluent injection. Introduction The Monterey formation is a complex reservoir with intense structuring, fracturing, and highly variable rock properties. It is a dual-porosity system, with low-permeability matrix rock and extensive fracturing. The fractures provide the flow path to the wells and are well-connected to a very large aquifer. The fluid system is equally complex. The original oil column was 2,000 ft thick, and the oil gravity varied from 5 to 19°API. Gravity/depth relationships vary within the field area. Heavy oil, as defined in this paper, is oil with dead-oil gravities of approximately 11°API or less. Fig. 1 is a geothermal temperature-gradient curve for offshore California. Fig. 2 is an estimation of live-oil viscosities for Monterey crude as a function of temperature and dead-oil gravity. Recovering the heavier oil at economic rates without producing large volumes of water is a challenge owing to a strong aquifer, highly permeable fractures, and a poor oil/water viscosity ratio. Achieving the large drawdown required to produce heavy oil at the high rates needed for economic operations offshore can result in the oil being bypassed by water flowing through the fractures. Even if bypassing can be avoided, the flow rate of heavy oil to the wellbore can be low. Furthermore, cooling of the heavy oil as it reaches the seafloor results in additional producing problems. As seen in Fig. 2, a 10°API oil has an in-situ viscosity of 100 cp at 200°F. As the heavy oil flows to the surface and cools, viscosity can rise above 10,000 cp and cause severe lifting problems. Deep, long throw wells (6,000 to 10,000 ft subsea), an offshore operating environment, a fracture zone with an active aquifer, and low heavy-oil prices rule out most methods of heavy-oil recovery. The challenge is to find a low-cost method to lower the oil viscosity in both the near-well region and the tubing. This paper documents a simple and inexpensive way to lower viscosity by an order of magnitude or more through cyclic injection of light oil. Theory Darcy's Law for radial, steady-state flow describes fluid flow in porous media. This simple equation gives guidance and insight to solve many oil-production problems:Equation 1 This pilot focused on reducing viscosity (µo) as a method to increase production rate (q). While the other components are also important, they were less critical for the following reasons:Fracture permeability in the major producing intervals of the Monterey formation in the Santa Barbara Channel is excellent. Wells have produced at rates in excess of 9,000 STB/D from as little as 40 ft true vertical depth (TVD) of the perforated interval. Average permeabilities are in the multidarcy range.High drawdowns may be harmful in the long run because of an unfavorable oil/water viscosity ratio. High drawdowns can result in water coning and fingering through the fractures, leaving bypassed oil in the formation. In addition, alternative lifting methods to increase drawdown can be costly owing to long throws and deep completions in the offshore environment. Reducing in-situ oil viscosity can improve the oil/water viscosity ratio, reduce water coning and fingering, reduce water cut, reduce lifting problems, and increase production rates and oil recovery from fractured heavy-oil reservoirs. HE-26 Pilot Background. The Heritage platform began producing from the Pescado field in the Santa Ynez Unit in December 1993. Wells produce 10 to 17°API oil from the Monterey and 34°API oil from sandstone formations. The Monterey formation consists of thin beds of porcelanite, chert, calcite, dolomite, and shale. The beds are highly fractured and well-connected both areally and vertically by an extensive fracture network. The fractures provide the primary flow paths in the reservoir and result in well rates as high as 10,000 STB/D. Formation pressure is supported by re-injection of produced gas and by a large, well-connected aquifer. The original oil column was approximately 2,000 ft thick and contained undersaturated oil with gravities grading from 19°API at the crest of the structure to 5°API at the original oil/water contact. Wells either flow naturally or are produced by high-volume gas lift. The sandstone formations lie below the Monterey and contain light oil with an associated gas cap. Sandstone wells flow naturally without the need for artificial lift. HE-26 History. The HE-26 well was drilled and completed in July 1997 in the Monterey formation, with perforations at 6,956 to 6,997 and 7,416 to 7,437 ft subsea. The well was stimulated with a combination of xylene, HCL, and mud acid, using foam and ball sealers for diversion. After stimulation, the well produced approximately 100 STB/D of 10.2°API oil and water. These perforations were isolated with a through-tubing bridge plug, and the well was reworked higher to 6,751 to 6,801 ft subsea. The new perforations were stimulated in a similar fashion. Oil gravity increased slightly, but production rates were unchanged. The interval was isolated with another through-tubing bridge. A final interval was perforated at 6,667 to 6,702 ft subsea. Oil gravity was slightly higher (11.4°API), but oil production rates once again did not change.


2021 ◽  
Author(s):  
Hadil Abukhalifeh ◽  
Ali Lohi ◽  
Simant Ranjan Upreti

Vapex (vapor extraction of heavy oil and bitumen) is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen.


2021 ◽  
Author(s):  
Alexey V. Vakhin ◽  
Irek I. Mukhamatdinov ◽  
Firdavs A. Aliev ◽  
Dmitriy F. Feoktistov ◽  
Sergey A. Sitnov ◽  
...  

Abstract A nickel-based catalyst precursor has been synthesized for in-situ upgrading of heavy crude oil that is capable of increasing the efficiency of steam stimulation techniques. The precursor activation occurs due to the decomposition of nickel tallate under hydrothermal conditions. The aim of this study is to analyze the efficiency of in-situ catalytic upgrading of heavy oil from laboratory scale experiments to the field-scale implementation in Boca de Jaruco reservoir. The proposed catalytic composition for in-reservoir chemical transformation of heavy oil and natural bitumen is composed of oil-soluble nickel compound and organic hydrogen donor solvent. The nickel-based catalytic composition in laboratory-scale hydrothermal conditions at 300°С and 90 bars demonstrated a high performance; the content of asphaltenes was reduced from 22% to 7 wt.%. The viscosity of crude oil was also reduced by three times. The technology for industrial-scale production of catalyst precursor was designed and the first pilot batch with a mass of 12 ton was achieved. A «Cyclic steam stimulation» technology was modified in order to deliver the catalytic composition to the pay zones of Boca de Jaruco reservoir (Cuba). The active forms of catalyst precursors are nanodispersed mixed oxides and sulfides of nickel. The pilot test of catalyst injection was carried out in bituminous carbonate formation M, in Boca de Jaruco reservoir (Cuba). The application of catalytic composition provided increase in cumulative oil production and incremental oil recovery in contrast to the previous cycle (without catalyst) is 170% up to date (the effect is in progress). After injection of catalysts, more than 200 samples from production well were analyzed in laboratory. Based on the physical and chemical properties of investigated samples and considering the excellent oil recovery coefficient it is decided to expand the industrial application of catalysts in the given reservoir. The project is scheduled on the fourth quarter of 2021.


2021 ◽  
pp. 1-13
Author(s):  
Melek Deniz Paker ◽  
Murat Cinar

Abstract A significant portion of world oil reserves reside in naturally fractured reservoirs and a considerable amount of these resources includes heavy oil and bitumen. Thermal enhanced oil recovery methods (EOR) are mostly applied in heavy oil reservoirs to improve oil recovery. In situ combustion (/SC) is one of the thermal EOR methods that could be applicable in a variety of reservoirs. Unlike steam, heat is generated in situ due to the injection of air or oxygen enriched air into a reservoir. Energy is provided by multi-step reactions between oxygen and the fuel at particular temperatures underground. This method upgrades the oil in situ while the heaviest fraction of the oil is burned during the process. The application of /SC in fractured reservoirs is challenging since the injected air would flow through the fracture and a small portion of oil in the/near fracture would react with the injected air. Only a few researchers have studied /SC in fractured or high permeability contrast systems experimentally. For in situ combustion to be applied in fractured systems in an efficient way, the underlying mechanism needs to be understood. In this study, the major focus is permeability variation that is the most prominent feature of fractured systems. The effect of orientation and width of the region with higher permeability on the sustainability of front propagation are studied. The contrast in permeability was experimentally simulated with sand of different particle size. These higher permeability regions are analogous to fractures within a naturally fractured rock. Several /SC tests with sand-pack were carried out to obtain a better understanding of the effect of horizontal vertical, and combined (both vertical and horizontal) orientation of the high permeability region with respect to airflow to investigate the conditions that are required for a self-sustained front propagation and to understand the fundamental behavior. Within the experimental conditions of the study, the test results showed that combustion front propagated faster in the higher permeability region. In addition, horizontal orientation almost had no effect on the sustainability of the front; however, it affected oxygen consumption, temperature, and velocity of the front. On the contrary, the vertical orientation of the higher permeability region had a profound effect on the sustainability of the combustion front. The combustion behavior was poorer for the tests with vertical orientation, yet the produced oil AP/ gravity was higher. Based on the experimental results a mechanism has been proposed to explain the behavior of combustion front in systems with high permeability contrast.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Chuan Lu ◽  
Wei Zhao ◽  
Yongge Liu ◽  
Xiaohu Dong

Oil-in-water (O/W) emulsions are expected to be formed in the process of surfactant flooding for heavy oil reservoirs in order to strengthen the fluidity of heavy oil and enhance oil recovery. However, there is still a lack of detailed understanding of mechanisms and effects involved in the flow of O/W emulsions in porous media. In this study, a pore-scale transparent model packed with glass beads was first used to investigate the transport and retention mechanisms of in situ generated O/W emulsions. Then, a double-sandpack model with different permeabilities was used to further study the effect of in situ formed O/W emulsions on the improvement of sweep efficiency and oil recovery. The pore-scale visualization experiment presented an in situ emulsification process. The in situ formed O/W emulsions could absorb to the surface of pore-throats, and plug pore-throats through mechanisms of capture-plugging (by a single emulsion droplet) and superposition-plugging or annulus-plugging (by multiple emulsion droplets). The double-sandpack experiments proved that the in situ formed O/W emulsion droplets were beneficial for the mobility control in the high permeability sandpack and the oil recovery enhancement in the low permeability sandpack. The size distribution of the produced emulsions proved that larger pressures were capable to displace larger O/W emulsion droplets out of the pore-throat and reduce their retention volumes.


Sign in / Sign up

Export Citation Format

Share Document