scholarly journals Real time system for human action evaluation

2021 ◽  
Author(s):  
Randy Tan

This thesis presents a real-time human activity analysis system, where a user’s activity can be quantitatively evaluated with respect to a ground truth recording. Multiple Kinects are used to solve the problem of self-occlusion while performing an activity. The Kinects are placed in locations with different perspectives to extract the optimal joint positions of a user using Singular Value Decomposition (SVD) and Sequential Quadratic Programming (SQP). The extracted joint positions are then fed through our Incremental Dynamic Time Warping (IDTW) algorithm so that an incomplete sequence of an user can be optimally compared against the complete sequence from an expert (ground truth). Furthermore, the user’s performance is communicated through a novel visual feedback system, where colors on the skeleton present the user’s level of performance. Experimental results demonstrate the impact of our system, where through elaborate user testing we show that our IDTW algorithm combined with visual feedback improves the user’s performance quantitatively.

2021 ◽  
Author(s):  
Randy Tan

This thesis presents a real-time human activity analysis system, where a user’s activity can be quantitatively evaluated with respect to a ground truth recording. Multiple Kinects are used to solve the problem of self-occlusion while performing an activity. The Kinects are placed in locations with different perspectives to extract the optimal joint positions of a user using Singular Value Decomposition (SVD) and Sequential Quadratic Programming (SQP). The extracted joint positions are then fed through our Incremental Dynamic Time Warping (IDTW) algorithm so that an incomplete sequence of an user can be optimally compared against the complete sequence from an expert (ground truth). Furthermore, the user’s performance is communicated through a novel visual feedback system, where colors on the skeleton present the user’s level of performance. Experimental results demonstrate the impact of our system, where through elaborate user testing we show that our IDTW algorithm combined with visual feedback improves the user’s performance quantitatively.


2021 ◽  
Author(s):  
Satoshi Miura ◽  
Kento Nakagawa ◽  
Kazumasa Hirooka ◽  
Yuya Matsumoto ◽  
Yumi Umesawa ◽  
...  

Abstract Sports-assisting technologies have been developed; however, most are to improve performances in individual sports such as ski, batting, and swimming. Few studies focused on team sports which require not only motor ability of individual players but also perceptual abilities to grasp positions of their own and others. In the present study, we aim to validate the feasibility of a visual feedback system for the improvement of space perception in relation to other persons that is necessary. Herein, the visual feedback system is composed of a flying drone that transmits the image to the participant’s smart glasses. With and without the system, the participant was able to see his/her own relative position in real time though the glass. Nine participants tried to position themselves on the line between two experimenters 30 m away from each other, which simulated the situation of a baseball cutoff man. As a result, the error distance between the participants’ position and the line significantly decreased when using the system than that without the system. Furthermore, after participants practiced the task with the system the error decreased compared to that before the practice. In conclusion, the real-time feedback system from the bird’s-eye view would work for improving the accuracy of space perception.


2014 ◽  
Author(s):  
William Katz ◽  
Thomas F. Campbell ◽  
Jun Wang ◽  
Eric Farrar ◽  
J. Coleman Eubanks ◽  
...  

Author(s):  
Jeffrey R. Gould ◽  
Lisa Campana ◽  
Danielle Rabickow ◽  
Richard Raymond ◽  
Robert Partridge

2014 ◽  
Vol 696 ◽  
pp. 266-270
Author(s):  
Hong Li Chen

This paper briefly describes the main ideas and implementation of technology strategy of Embedded real-time system security level assessment which is important part of mechanism to system flexibility based on embedded real-time system, designs the embedded real-time system security level assessment system based on pattern matching for the characteristics of embedded real-time systems. By building security level assessment system and simulation testing environment based on RT-Linux real-time operating system, the impact of Embedded real-time system security level assessment strategy on performance of RT-Linux was tested.


2008 ◽  
Vol 25 (11) ◽  
pp. 2055-2073 ◽  
Author(s):  
M. Benkiran ◽  
E. Greiner

Abstract Incremental analysis updates (IAUs) are a procedure by which analysis increments can be incorporated into a model hindcast and forecast in a smooth manner. It is similar to nudging but has a better response, particularly in regions of missing data. The IAU procedure was popular in the late 1990s in weather forecasting centers, because it acts as a low-pass filter. The impact of the IAU is examined in the context of a real-time, eddy-permitting ocean forecasting system in the North Atlantic from Mercator Océan. Forecast scores and ocean physics are compared for the following three companion runs: a forced mode, a sequential analysis, and IAU. These comparisons confirm that the IAU is beneficial because it removes spinup effects such as spurious waves and tropical convective cells. Forecast scores are also slightly improved. In addition, contrary to the weather forecasting case where the model and data are fairly unbiased, the IAU has the advantage of correcting the systematic biases in the ocean data assimilation system.


Sentiment analysis is a task, that is becoming recently important for numerous companies. Because the consigner subscriptions on social media like Facebook, twitter and other side get their product reviews. If the company wants to track tweets about their brand to command over the impact on time or many website analyze the comments on their articles. This will help them to track comments and impact. So the sentiment analysis is an automated system that collects and analyzes the content and generates the desired results. This paper proposes a sentiment analysis system for twitter posts. Proposed system will work on real time tweets. System is also designed in such a way that this can analyze data related to any topic. Python programming language is used to extract tweets form twitter feeds. Proposed system also calculates the level of sentiments. That how much negative or positive tweets are. This paper also presents some real time result analysis.


2018 ◽  
Vol 6 (4) ◽  
pp. 5-17
Author(s):  
Justin Longo ◽  
Alan Rodney Dobell

Policy analytics has emerged as a modification of traditional policy analysis, where the discrete stages of the policy cycle are reformulated into a continuous, real-time system of big data collection, data analytics, and ubiquitous, connected technologies that provides the basis for more precise problem definition, policy experimentation for revealing detailed insights into system dynamics, and ongoing assessment of the impact of micro-scale policy interventions to nudge behaviour towards desired policy objectives. Theoretical and applied work in policy analytics research and practice is emerging that offers a persuasive case for the future possibilities of a real-time approach to policymaking and governance. However, policy problems often operate on long time cycles where the effect of policy interventions on behaviour and decisions can be observed only over long periods, and often only indirectly. This article surveys examples in the policy analytics literature, infers from those examples some characteristics of the policy problems and settings that lend themselves to a policy analytics approach, and suggests the boundaries of feasible policy analytics. Rather than imagine policy analytics as a universal replacement for the decades-old policy analysis approach, a sense of this boundary will allow us to more effectively consider the appropriate application of real-time policy analytics.


2017 ◽  
Vol 14 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Peng Shi ◽  
Li Li

The functions of the network analysis system include detection and analysis of network data stream. According to the results of the network analysis, we monitor the network accident and avoid the security risks. This can improve the network performance and increase the network availability. As the data flow in the network is constantly produced, the biggest characteristic of network analysis system is that it is a real-time system. Because of the high requirements of the network data analysis and network fault processing, the system requires very high processing efficiency of the real time data of network. Stream computing is a technique specifically for processing real-time data streams. Its idea is that the value of the data is reduced with the lapse of time, so as long as the data appearing, it must be processed as soon as possible. So we use the technology of stream computing to design network analysis system to meet the needs of real-time capability. Moreover, the stream computing framework has been widely welcomed in the field because of its good expansibility, ease of use and flexibility. In this paper, firstly, we introduce the characteristics of the data processing based on stream computing and the traditional data processing separately. We point out their difference and introduce the technique of stream computing. Then, we introduce the architecture of network analysis system designed base on the technique of stream computing. The architecture includes two main components that are logic processing layer and communication layer. We describe the characteristics of each component and functional characteristics in detail, and we introduce the system load balancing algorithm. Finally, by experiments, we verify the effectiveness of the system’s characteristics of dynamic expansion and load balancing.


2015 ◽  
Vol 16 (6) ◽  
pp. 2345-2363 ◽  
Author(s):  
Steven M. Martinaitis ◽  
Stephen B. Cocks ◽  
Youcun Qi ◽  
Brian T. Kaney ◽  
Jian Zhang ◽  
...  

Abstract Precipitation gauge observations are routinely classified as ground truth and are utilized in the verification and calibration of radar-derived quantitative precipitation estimation (QPE). This study quantifies the challenges of utilizing automated hourly gauge networks to measure winter precipitation within the real-time Multi-Radar Multi-Sensor (MRMS) system from 1 October 2013 to 1 April 2014. Gauge observations were compared against gridded radar-derived QPE over the entire MRMS domain. Gauges that reported no precipitation were classified as potentially stuck in the MRMS system if collocated hourly QPE values indicated nonzero precipitation. The average number of potentially stuck gauge observations per hour doubled in environments defined by below-freezing surface wet-bulb temperatures, while the average number of observations when both the gauge and QPE reported precipitation decreased by 77%. Periods of significant winter precipitation impacts resulted in over a thousand stuck gauge observations, or over 10%–18% of all gauge observations across the MRMS domain, per hour. Partial winter impacts were observed prior to the gauges becoming stuck. Simultaneous postevent thaw and precipitation resulted in unreliable gauge values, which can introduce inaccurate bias correction factors when calibrating radar-derived QPE. The authors then describe a methodology to quality control (QC) gauge observations compromised by winter precipitation based on these results. A comparison of two gauge instrumentation types within the National Weather Service (NWS) Automated Surface Observing System (ASOS) network highlights the need for improved gauge instrumentation for more accurate liquid-equivalent values of winter precipitation.


Sign in / Sign up

Export Citation Format

Share Document