scholarly journals PREDICTION OF CHRONIC KIDNEY DISEASE USING DEEP NEURAL NETWORK

2021 ◽  
Vol 4 (4) ◽  
pp. 34-41
Author(s):  
Iliyas Ibrahim Iliyas ◽  
Saidu Isah Rambo ◽  
Ali Baba Dauda ◽  
Suleiman Tasiu

eural Network (DNN) is now applied in disease prediction to detect various ailments such as heart disease and diabetes. Another disease that is causing a threat to our health is kidney disease. This disease is becoming prevalent due to substances and elements we intake. Ignoring the kidney malfunction can cause chronic kidney disease leading to death. Frequently, Chronic Kidney Disease (CKD) and its symptoms are mild and gradual, often go unnoticed for years only to be realized of late. We conducted our research on CKD in Bade, a Local Government Area of Yobe State in Nigeria. The area has been a center of attention by medical practitioners due to the prevalence of CKD. Unfortunately, a technical approach in culminating the disease is yet to be attained. We obtained a record of 1200 patients with 10 attributes as our dataset from Bade General Hospital and used the DNN model to predict CKD's absence or presence in the patients. The model produced an accuracy of 98%. Furthermore, we identified and highlighted the Features importance to rank the features used in predicting the CKD. The outcome revealed that two attributes: Creatinine and Bicarbonate, have the highest influence on the CKD prediction.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dengqing Zhang ◽  
Yunyi Chen ◽  
Yuxuan Chen ◽  
Shengyi Ye ◽  
Wenyu Cai ◽  
...  

In recent decades, heart disease threatens people’s health seriously because of its prevalence and high risk of death. Therefore, predicting heart disease through some simple physical indicators obtained from the regular physical examination at an early stage has become a valuable subject. Clinically, it is essential to be sensitive to these indicators related to heart disease to make predictions and provide a reliable basis for further diagnosis. However, the large amount of data makes manual analysis and prediction taxing and arduous. Our research aims to predict heart disease both accurately and quickly through various indicators of the body. In this paper, a novel heart disease prediction model is given. We propose a heart disease prediction algorithm that combines the embedded feature selection method and deep neural networks. This embedded feature selection method is based on the LinearSVC algorithm, using the L1 norm as a penalty item to choose a subset of features significantly associated with heart disease. These features are fed into the deep neural network we built. The weight of the network is initialized with the He initializer to prevent gradient varnishing or explosion so that the predictor can have a better performance. Our model is tested on the heart disease dataset obtained from Kaggle. Some indicators including accuracy, recall, precision, and F1-score are calculated to evaluate the predictor, and the results show that our model achieves 98.56%, 99.35%, 97.84%, and 0.983, respectively, and the average AUC score of the model reaches 0.983, confirming that the method we proposed is efficient and reliable for predicting heart disease.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Vijendra Singh ◽  
Vijayan K. Asari ◽  
Rajkumar Rajasekaran

Diabetes and high blood pressure are the primary causes of Chronic Kidney Disease (CKD). Glomerular Filtration Rate (GFR) and kidney damage markers are used by researchers around the world to identify CKD as a condition that leads to reduced renal function over time. A person with CKD has a higher chance of dying young. Doctors face a difficult task in diagnosing the different diseases linked to CKD at an early stage in order to prevent the disease. This research presents a novel deep learning model for the early detection and prediction of CKD. This research objectives to create a deep neural network and compare its performance to that of other contemporary machine learning techniques. In tests, the average of the associated features was used to replace all missing values in the database. After that, the neural network’s optimum parameters were fixed by establishing the parameters and running multiple trials. The foremost important features were selected by Recursive Feature Elimination (RFE). Hemoglobin, Specific Gravity, Serum Creatinine, Red Blood Cell Count, Albumin, Packed Cell Volume, and Hypertension were found as key features in the RFE. Selected features were passed to machine learning models for classification purposes. The proposed Deep neural model outperformed the other four classifiers (Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Logistic regression, Random Forest, and Naive Bayes classifier) by achieving 100% accuracy. The proposed approach could be a useful tool for nephrologists in detecting CKD.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 34938-34945 ◽  
Author(s):  
Liaqat Ali ◽  
Atiqur Rahman ◽  
Aurangzeb Khan ◽  
Mingyi Zhou ◽  
Ashir Javeed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document