scholarly journals MOLECULAR SCREENING OF SOME ROMANIAN APPLE CULTIVARS FOR SCAB RESISTANCE GENES

2020 ◽  
Vol 36 ◽  
pp. 5-11
Author(s):  
Mădălina Militaru ◽  
Monica Sturzeanu ◽  
Adina Iancu

Apple scab, incided by the fungus Venturia inaequalis (Cke.) Wint., is a devastating disease of apple reported from almost all apple producing Romanian areas, which causes up to 70% losses of production. Molecular markers were used for detection of scab resistance genes in 22 old and introduced apple cultivars ('Romus 3', 'Romus 5', 'Rebra', 'Rustic', 'Nicol', 'Colmar', 'Colonade', registered by Research Institute for Fruit Growing Pitesti; 'Generos', 'Iris', 'Irisem', 'Luca', 'Ciprian', 'Cezar', 'Remar', 'Valery', 'Real', registered by Research Station for Fruit Growing Voinesti, Dambovita; 'Aura', 'Starkprim', 'Ionaprim', 'Bistritean', registered by Research Station for Fruit Growing Bistrita and old cultivars: 'Domnesc', 'Cretesc'). The presence of scab resistance genes were detected using the molecular markers: AL-07 (SCAR), AM19 (SCAR), VfC for Rvi6 (Vf) gene, AD13 (SCAR) for Rvi4 (Vr1) gene, OPL19 (SCAR) for Rvi2 (Vh2) and Rvi8 (Vh8) genes and OPB12 (STS) for Rvi5 (Vm) gene. The Rvi6 gene was detected in 17 cultivars from different breeding center. The marker AD13 presents in genome of 8 cultivars, such as 'Romus 3', 'Romus 5', 'Generos', 'Iris', 'Irisem', 'Cezar', 'Remar', 'Aura'. The Rvi5 gene was revealed in 3 cultivars ('Nicol', 'Generos', 'Irisem'), only.

2011 ◽  
Vol 47 (No. 4) ◽  
pp. 156-165 ◽  
Author(s):  
J. Patzak ◽  
F. Paprštein ◽  
A. Henychová

The presence of genes for resistance to scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) was studied using molecular markers in a sample of 279 apple cultivars from the Czech collection of apple genetic resources. The sample comprised 37 cultivars supposed to have the Vf gene for scab resistance, 97 reference world cultivars and 145 old and local cultivars. Six PCR molecular markers for the scab resistance genes Vf, Vm, Vbj, Vr and Vh and three PCR molecular markers for the powdery mildew resistance genes Pl-w, Pl-1 and Pl-d were used. The marker for the major scab resistance gene Vf was detected in all cultivars supposed to have Vf, except in Romus 1, and in the three small-fruited cultivars Malus Evereste, Golden Gem and Hilleri. The markers of the Vr and Vh scab resistance genes were detected in 22 cultivars in combination with the marker for Vf, in 56 reference world cultivars and in 82 old and local apple cultivars. PCR molecular markers for one or two of the powdery mildew resistance genes were detected in the small-fruited cultivars Malus Evereste, Golden Gem, prof. Sprengeri and Hilleri; and in the larger fruited cultivars Hagloe Crab, Borovinka and Tita Zetei. We did not find markers for the scab resistance genes Vm and Vbj in any of the studied cultivars. They are absent also in the remaining part of the Czech collection of apple genetic resources. PCR molecular markers are useful tools for the identification of resistance genes within apple germplasm collections and can be used to increase the number of sources for disease resistance in breeding programmes.


2020 ◽  
Vol 56 (No. 4) ◽  
pp. 165-169
Author(s):  
Lefkothea Karapetsi ◽  
Irini Nianiou-Obeidat ◽  
Antonios Zambounis ◽  
Maslin Osathanunkul ◽  
Panagiotis Madesis

Apple scab caused by Venturia inaequalis has the most destructive effects among other phytopathogens in apple crops all over the world. The integration of resistance genes from local and domestic cultivars is a prerequisite for the efficient control of this disease and is a main target in efficient breeding approaches. Across Greece, many domestic apple cultivars are reported without deep knowledge about the presence and diversity of scab resistance genes. In this study, the presence of five resistance genes (Rvi2, Rvi4, Rvi6, Rvi8 and Rvi11) was evaluated across twenty local and domestic apple genotypes, employing twelve molecular markers closely linked to known apple scab resistance loci. Significant differences and polymorphisms among the tested cultivars were detected suggesting that some of them carry a sufficient number of resistance genes. This observed genetic diversity could be exploited in ongoing breeding approaches as a natural source of polygenic resistance against apple scab.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2074-2081 ◽  
Author(s):  
Andrea Patocchi ◽  
Andreas Wehrli ◽  
Pierre-Henri Dubuis ◽  
Annemarie Auwerkerken ◽  
Carmen Leida ◽  
...  

Apple scab, caused by Venturia inaequalis, is a major fungal disease worldwide. Cultivation of scab-resistant cultivars would reduce the chemical footprint of apple production. However, new apple cultivars carrying durable resistances should be developed to prevent or at least slow the breakdown of resistance against races of V. inaequalis. One way to achieve durable resistance is to pyramid multiple scab resistance genes in a cultivar. The choice of the resistance genes to be combined in the pyramids should take into account the frequency of resistance breakdown and the geographical distribution of apple scab isolates able to cause such breakdowns. In order to acquire this information and to make it available to apple breeders, the VINQUEST project ( www.vinquest.ch ) was initiated in 2009. Ten years after launching this project, 24 partners from 14 countries regularly contribute data. From 2009 to 2018, nearly 9,000 data points have been collected. This information has been used to identify the most promising apple scab resistance genes for developing cultivars with durable resistance, which to date are: Rvi5, Rvi11, Rvi12, Rvi14, and Rvi15. As expected, Rvi1, together with Rvi3 and Rvi8, were often overcome, and have little value for scab resistance breeding. Rvi10 may also belong to this group. On the other hand, Rvi2, Rvi4, Rvi6, Rvi7, Rvi9, and Rvi13 are still useful for breeding, but their use is recommended only in extended pyramids of ≥3 resistance genes.


Genome ◽  
2006 ◽  
Vol 49 (10) ◽  
pp. 1238-1245 ◽  
Author(s):  
N. Erdin ◽  
S. Tartarini ◽  
G.A.L. Broggini ◽  
F. Gennari ◽  
S. Sansavini ◽  
...  

Apple scab, caused by the fungus Venturia inaequalis , is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple ‘Hansen’s baccata #2’, and is 1 of the 6 “historical” major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of ‘Golden Delicious’ (vbvb) and ‘Hansen’s baccata #2’ (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 855C-855 ◽  
Author(s):  
Minou Hemmat ◽  
Norman F. Weeden ◽  
Susan K. Brown

Apple scab, Venturia inaequalis (Cke.) Wint., is one of the most damaging diseases of apples. Although fungicide sprays have been used to control the disease, genetic resistance in existing commercially important varieties would be desirable. Identification of molecular marker(s) would be helpful in devising biotechnological approaches to control the disease. We used bulk segregant analysis to identify RAPD markers that cosegregate or display a tight linkage with Vf gene in Prima × Spartan cross. Using this approach, we are saturating the region around the scab resistance gene for the purpose of bracketing the locus. We have identified several markers associated with the Vf locus. The closest markers have been isolated and sequenced to be used as SCARs. The relationship and distances of the markers with the Vf locus and other previously reported markers will be discussed.


Genome ◽  
2005 ◽  
Vol 48 (4) ◽  
pp. 630-636 ◽  
Author(s):  
A Patocchi ◽  
M Walser ◽  
S Tartarini ◽  
G A.L Broggini ◽  
F Gennari ◽  
...  

For all known major apple scab resistance genes except Vr, molecular markers have been published. However, the precise position of some of these genes, in the apple genome, remains to be identified. Knowledge about the relative position of apple scab resistance genes is necessary to preliminarily evaluate the probability of success of their pyramidization. Pyramidization of different resistance genes into the same genotype is a reliable way to create cultivars with durable apple scab resistance. Applying the genome scanning approach (GSA), we identified the linkage group of the scab resistance gene Vm, derived from Malus micromalus, and we found a new molecular marker tightly associated with the gene. The simple sequence repeat Hi07h02, previously mapped on linkage group 17, cosegregates with the Vm gene (no recombinants in the 95 plants tested). The already published sequence-characterized amplified region Vm marker OPB12687 was found to be linked at about 5 cM from the resistance gene and, therefore, this marker also maps on linkage group 17 of apple. This is the first report of the discovery of a major apple scab resistance gene on linkage group 17. The advantages of using GSA for the identification of molecular markers for qualitative traits are discussed.Key words: Malus, Venturia inaequalis, mapping, simple sequence repeat.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 619a-619
Author(s):  
Hong Y. Yang ◽  
Schuyler S. Korban ◽  
Jutta Kruger ◽  
Hanna Schmidt

Apple scab, caused by Venturia inaequalis (Cke.) Wint., is the most serious disease of apple trees. Resistance to V. inaequalis, derived from the small-fruited species Malus floribunda 821, is determined by a major dominant gene Vf. Our major objective is to identify RAPD markers linked to the Vf gene. The approach in this paper is based on the introgression of the Vf gene from M. floribunda into commercial cultivars. Almost 200 random sequence decamer-primers have been used to screen a pair of bulked samples and the donor parent M. floribunda clone 821 for markers linked to the Vf gene conferring resistance to apple scab. A single primer has been identified which generated a PCR fragment, OPK16/1300, from the donor parent M. floribunda clone 821 and the scab-resistant selections/cultivars bulk, but not from the scab-susceptible recurrent parent bulk. Co-segregation analysis using a segregating apple progeny and polymorphism analysis of individual scab-resistant Coop selections/cultivars have confirmed that this marker is linked to the scab-resistance gene Vf. OPK16/1300 has since been cloned and sequenced. Sequence-specific primers of 25 oligonucleotides based on the marker have been synthesized and used to screen further M. floribunda clone 821, scab-susceptible apple cultivars, scab-resistant apple cultivars, and scab-resistant Coop selections. The sequence-specific primers have identified polymorphisms of OPK16/1300 based on the presence or absence of a single band.


Author(s):  
М.I. Dulov ◽  

The use of chemical means of protection against Apple scab is associated with high material costs and causes great harm to the environment. Growing of apple varieties with stable resistance to scab (the pathogen Venturia inaequalis) will significantly limit the use of pesticides. On the territory of the Russian Federation, the Rvi6 gene is considered immune, which determines resistance to five scab races, including the most aggressive fifth. The country has scabimmune apple varieties created by scientists from VNIISPK, NCFSCHWWG, FRC named after I. V. Michurin , VSTISP and other scientific institutions. In recent years, the Rvi6 gene has been overcome by scab in many European countries, and the Rvi5 gene, which is immune to four scab races, has been overcome in Russia and Germany. When creating high-yielding apple varieties of a new generation, with good fruit flavor quality, long-term and stable resistance to scab, in addition to the rvi6 resistance gene, the most promising sources are the Rvi5, Rvi11, Rvi12, Rvi14 and Rvi15 genes. The Rvi2, Rvi4, Rvi6, Rvi7 and Rvi9 genes in the apple breeding process are best used in extended pyramids of genetic resistance to scab. This will allow you to combine several scab resistance genes that control the immune system in one apple genotype. The article describes the characteristics of DNA markers, the nucleotide sequence of primers, the size of target fragments of the PCR product, including the size of the dominant allele product for detecting Rvi genes of the Venturia inaequalis pathogen that are promising for apple breeding in varieties and hybrid material. Amplification programs were selected to identify resistance genes to various races of apple scab.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 370-375 ◽  
Author(s):  
Valérie Caffier ◽  
Andrea Patocchi ◽  
Pascale Expert ◽  
Marie-Noëlle Bellanger ◽  
Charles-Eric Durel ◽  
...  

A set of differential hosts has recently been identified for 17 apple scab resistance genes in an updated system for defining gene-for-gene (GfG) relationships in the Venturia inaequalis-Malus pathosystem. However, a set of reference isolates characterized for their complementary avirulence alleles is not yet available. In this paper, we report on improving the set of differential hosts for h(7) and propose the apple genotype LPG3-29 as carrying the single major resistance gene Rvi7. We characterized a reference set of 23 V. inaequalis isolates on 14 differential apple hosts carrying major resistance genes under controlled conditions. We identified isolates that were virulent on at least one of the following defined resistance gene hosts: h(1), h(2), h(3), h(4), h(5), h(6), h(7), h(8), h(9), h(10), and h(13). Sixteen different virulence patterns were observed. In general, the isolates carried one to three virulences, but some of them were more complex, with up to six virulences. This set of well-characterized isolates will be helpful for the identification of additional apple scab resistance genes in apple germplasm and the characterization of new GfG relationships to help improve our understanding of the host-pathogen interactions in the V. inaequalis-Malus pathosystem.


Sign in / Sign up

Export Citation Format

Share Document