scholarly journals Design Optimization of Permanent Magnet Clutch with Ārtap Framework

2021 ◽  
Vol 65 (2) ◽  
pp. 106-112
Author(s):  
Ekaterina Andriushchenko ◽  
Jan Kaska ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
...  

So far, Permanent Magnet (PM) clutches have been broadly used as torque transmission devices. With the aim of effective utilization of materials and energy in the manufacturing of PM clutches, design optimization has been widely applied. Generally, PM clutches are optimized applying linear dimensions as optimization parameters. On the contrary, optimization of PM clutch shapes has not been done extensively. Therefore, this paper performs optimization of PM clutch shapes with the following objectives: maximum tangential attraction force and minimum volume of utilized materials. To form optimal shapes, the points on the clutch surface are chosen as optimization parameters. The optimization is carried out using Ārtap framework in connection with COMSOL software, where the 3D model of the clutch has been created. After the optimization, the tangential attraction force has increased by 13 % and the volume of the clutch has been reduced by 24 %. Although the obtained shapes appear to be highly intricate, it does not pose an obstacle for modern manufacturing techniques.


2021 ◽  
Author(s):  
Ekaterina Andriushchenko ◽  
Jan Kaska ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
...  

This paper performs optimization of permanent magnet clutch shapes with the following objectives: maximum tangential attraction force and minimum volume of utilized materials. To form optimal shapes, the points on the clutch surface are chosen as optimization parameters. The optimization is carried out using Ārtap framework in connection with COMSOL software, where the 3D model of the clutch has been created. After the optimization, the tangential attraction force has increased by 13% and the volume of the clutch has been reduced by 24%.



2021 ◽  
Author(s):  
Ekaterina Andriushchenko ◽  
Jan Kaska ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
...  

This paper performs optimization of permanent magnet clutch shapes with the following objectives: maximum tangential attraction force and minimum volume of utilized materials. To form optimal shapes, the points on the clutch surface are chosen as optimization parameters. The optimization is carried out using Ārtap framework in connection with COMSOL software, where the 3D model of the clutch has been created. After the optimization, the tangential attraction force has increased by 13% and the volume of the clutch has been reduced by 24%.



Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 87
Author(s):  
Nicholas A. Jones ◽  
Jason Clark

This paper presents a structural geometry for increasing piezoelectric deformation, which is suitable for both micro- and macro-scale applications. New and versatile microstructure geometries for actuators can improve device performance, and piezoelectric designs benefit from a high-frequency response, power density, and efficiency, making them a viable choice for a variety of applications. Previous works have presented piezoelectric structures capable of this amplification, but few are well-suited to planar manufacturing. In addition to this manufacturing difficulty, a large number of designs cannot be chained into longer elements, preventing them from operating at the macro-scale. By optimizing for both modern manufacturing techniques and composability, this structure excels as an option for a variety of macro- and micro-applications. This paper presents an analytical compact model of a novel dual-bimorph piezoelectric structure, and shows that this compact model is within 2% of a computer-distributed element model. Furthermore it compares the actuator’s theoretical performance to that of a modern actuator, showing that this actuator trades mechanical efficiency for compactness and weight savings.



Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 494
Author(s):  
Ekaterina Andriushchenko ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
Anton Rassõlkin ◽  
...  

In recent decades, the genetic algorithm (GA) has been extensively used in the design optimization of electromagnetic devices. Despite the great merits possessed by the GA, its processing procedure is highly time-consuming. On the contrary, the widely applied Taguchi optimization method is faster with comparable effectiveness in certain optimization problems. This study explores the abilities of both methods within the optimization of a permanent magnet coupling, where the optimization objectives are the minimization of coupling volume and maximization of transmitted torque. The optimal geometry of the coupling and the obtained characteristics achieved by both methods are nearly identical. The magnetic torque density is enhanced by more than 20%, while the volume is reduced by 17%. Yet, the Taguchi method is found to be more time-efficient and effective within the considered optimization problem. Thanks to the additive manufacturing techniques, the initial design and the sophisticated geometry of the Taguchi optimal designs are precisely fabricated. The performances of the coupling designs are validated using an experimental setup.



Sign in / Sign up

Export Citation Format

Share Document