scholarly journals Passenger Car Unit Estimation at Signalized Intersection for Non-lane Based Mixed Traffic Using Microscopic Simulation Model

2017 ◽  
Vol 45 (1) ◽  
pp. 12 ◽  
Author(s):  
Gowri Asaithambi ◽  
Hayjy Sekar Mourie ◽  
Ramaswamy Sivanandan

In India, traffic on roads is mixed in nature with widely varying static and dynamic characteristics of vehicles. At intersections, vehicles do not follow ordered queue and lane discipline. Different vehicle types occupy different spaces on the road, move at different speeds, and start at different accelerations. The problem of measuring volume of such mixed traffic has been addressed by converting different vehicles categories into equivalent passenger cars and expressing the volume in terms of Passenger Car Unit (PCU) per hour. The accurate estimation of PCU values for different roadway and traffic conditions is essential for better operation and management of roadway facilities. Hence, the objective of the present study is to estimate the PCU values at signalized intersection in mixed traffic and to study the influence of traffic volume, traffic composition and road width on PCU values.For this purpose, a mixed traffic simulation model developed specifically for a signalized intersection was used. The model was calibrated and validated with the traffic data collected from a signalized intersection in Chennai city. Simulation runs were carried out for various combinations of vehicular composition, volume levels and road width. It was observed that presence of heavy vehicles and increase in road width affects the PCU values. The obtained PCU values were statistically checked for accuracy and proven to be satisfied. The PCU values obtained in this study can be used as a guideline for the traffic engineers and practitioners in the design and analysis of signalized intersections where mixed traffic conditions exist.

2015 ◽  
Vol 776 ◽  
pp. 95-100
Author(s):  
I. Gusti Raka Purbanto

Motorcycle dominates traffic in Bali, particularly in urban roads, which occupy more than 85% of mode share. The three types of vehicles, i.e. motorcycles, heavy and light vehicles share the roadways together. Under mixed traffic conditions, motorcycle may be travelling in between and alongside two consecutive motor vehicles. Considering such a situation, passenger car equivalent values should be examined thoroughly. This study aims to determine passenger car equivalent (PCEs) of motorcycle at mid-block of Sesetan Road. Three approaches are used to examine the PCEs values. This study found that the PCE of motorcycles are in a range between 0.2 and 0.4. This values are about the same to the existing PCE of the Indonesian Highway Capacity Manual (1997). This study also pointed out that motorcyclists and car drivers may behave differently to the existence of motorcycles. Car drivers are more aware than motorcyclists on the existence of motorcycle on the road. Further, more samples are required to obtain comprehensive results. In addition, the presence of heavy vehicles need to be considered for future study.


2018 ◽  
Vol 181 ◽  
pp. 06006
Author(s):  
Najid

Value of Passenger Car Unit or commonly known as PCU value is a value that is given to any vehicle that is classified into heavy vehicles, light vehicles (passenger car) and motorcycles. The value of passenger car unit on Indonesia Highway Capacity Manual (IHCM) set up in 1997 is based on a study conducted from 1980-1990 in several cities in Indonesia At the time of the study, the traffic conditions are very different to the current traffic conditions. That affects of difference traffic conditions are the composition of traffic, traffic regulations, traffic density, traffic discipline and the presence of mass transit, so that the results of traffic analysis do not always correspond to reality as there are anomalies in the determination of the level of road service (Najid, 2014). As well the incompatibility of the capacity value which is considered due to the incompatibility value of Passenger Car Units (PCU). Evaluation PCU become very important to get the value of traffic parameters into compliance with actually occur. In accordance with the traffic density is higher actually, then it is necessary to study for evaluation against PCU current value and the need to approach or to get the value of PCU more in line with current traffic conditions. Data collected at two cities, those are Bandung and Semarang. Based on analysis found PCU’s value that got from survey have difference but not all significantly with PCU value in IHCM.


Author(s):  
Raunak Mishra ◽  
Pallav Kumar ◽  
Shriniwas S. Arkatkar ◽  
Ashoke Kumar Sarkar ◽  
Gaurang J. Joshi

This research was aimed at developing an area occupancy–based method for estimating passenger car unit (PCU) values for vehicle categories under heterogeneous traffic conditions on multilane urban roads for a wide range of traffic flow levels. First, PCU values of vehicle categories were determined according to the Transport and Road Research Laboratory definition and replaced the commonly considered measure of performance speed with area occupancy using simulation. The PCU values obtained were found to be significantly different for different volume-to-capacity ratios; this result shows that the PCU value is dynamic in nature. While the dynamic nature of PCU values is well appreciated, practitioners may prefer a single set of optimized PCU values (unique for each vehicle category). Hence, a new method with a matrix solution was proposed to estimate the optimized or unique set of PCU values with area occupancy as the performance measure. To check the credibility of the proposed method, the estimated PCU values were compared from existing guidelines regulated by the Indian Roads Congress (IRC) and values estimated with the widely accepted dynamic PCU concept of speed–area ratio. Results show that the PCU values suggested by IRC and the dynamic PCU concept using the speed–area ratio underestimate and overestimate the flows, respectively, at different traffic volumes. However, the values obtained with the area-occupancy concept were found to be consistent with the traffic flow in a cars-only traffic situation at different flow conditions. The derived set of optimized PCU values proposed can be useful for traffic engineers, researchers, and practitioners for capacity and level-of-service analysis under heterogeneous traffic conditions.


Transport ◽  
2020 ◽  
Vol 35 (1) ◽  
pp. 48-56
Author(s):  
Sankaran Marisamynathan ◽  
Perumal Vedagiri

The large proportions of pedestrian fatalities led researchers to make the improvements of pedestrian safety at intersections. Thus, this paper proposes a methodology to evaluate crosswalk safety at signalized intersections using Surrogate Safety Measures (SSM) under mixed traffic conditions. The required pedestrian, traffic, and geometric data were extracted based on the videographic survey conducted at signalized intersections in Mumbai (India). Post Encroachment Time (PET) for each pedestrian were segregated into three categories for estimating pedestrian–vehicle interactions and Cumulative Frequency Distribution (CDF) was plotted to calculate the threshold values for each interaction severity level. The Cumulative Logistic Regression (CLR) model was developed to predict the pedestrian mean PET values in the cross-walk at signalized intersections. The proposed model was validated with a new signalized intersection and the results were shown that the proposed PET ranges and model appropriate for Indian mixed traffic conditions. To assess the suitability of model framework, model transferability was carried out with data collected at signalized intersection in Kolkata (India). Finally, this study can be helpful to rank the severity level of pedestrian safety in the crosswalk and improve the existing facilities at signalized intersections.


2018 ◽  
Vol 144 (10) ◽  
pp. 04018064 ◽  
Author(s):  
Pallav Kumar ◽  
Narayana Raju ◽  
Ayush Mishra ◽  
Shriniwas S. Arkatkar ◽  
Gaurang Joshi

Author(s):  
Xiaofei Ye ◽  
Jun Chen ◽  
Guiyan Jiang ◽  
Xingchen Yan

The objectives of this study were to identify the factors affecting the pedestrian level of service (LOS) at signalized intersection crosswalks under mixed traffic conditions and to develop a suitable method for estimating pedestrian LOS. The important factors influencing pedestrian LOS at crosswalks were summarized: turning traffic, through traffic, number of pedestrians, and pedestrian delay. In the Highway Capacity Manual method, pedestrian delay can be calculated by Webster's delay model, which assumes that pedestrians arrive at a uniform rate and comply with the signal at an intersection. However, that assumption is not suitable for the Chinese scenario. A pedestrian delay model was developed by considering nonuniform arrival rates and noncompliant behavior under mixed traffic conditions. The data collected by video and a questionnaire survey include information on 1,257 participants' real-time sense of comfort and safety when crossing five selected intersections and on the operational characteristics of the intersections. With perceived LOS as a dependent variable, Pearson correlation analysis and linear regression techniques were explored to determine the significant factors affecting LOS. To overcome the limitations of linear regression techniques, cumulative logistic regression was done to develop a model that fits mixed traffic conditions in China—a model that can predict the probability of responses within each LOS on the basis of a combination of explanatory variables. The results showed that the cumulative logistic model fit the survey data better than the linear regression model and produces LOS A for the crosswalks.


2016 ◽  
Vol 40 (4) ◽  
pp. 7-14 ◽  
Author(s):  
Dodappaneni Abhigna ◽  
Sindhu Kondreddy ◽  
K. V. R. Ravi Shankar

Roundabouts are replacing conventional unsignalized intersections in many parts of the world (Polus and Shmueli, 1997). Capacity estimation is necessary for designing a new roundabout, to analyze and improve the existing roundabout facilities. There are several methods to estimate the capacity of the roundabout, but most of them are for homogeneous lane based traffic conditions and not applicable for mixed traffic conditions. This study tries to find out the applicability of the existing methods to mixed traffic conditions, identify the effect of vehicle composition, travel time and delay on capacity. In this study, data was collected from two roundabouts located in Mysore, Karnataka and Rajahmundry, Andhra Pradesh in India. Capacities for both the roundabouts are calculated using the existing methods and compared. VISSIM simulation model has been developed and analyzed for different vehicle compositions scenarios. It was observed that vehicle composition of the traffic influences the roundabout capacity. Since the entry capacity of a roundabout varies significantly with the vehicle composition of the traffic at the roundabout, it is necessary to incorporate this factor into the existing capacity estimation models.


Sign in / Sign up

Export Citation Format

Share Document