scholarly journals Real-time Look-ahead Cruise Control Simulator

2017 ◽  
Vol 46 (1) ◽  
pp. 11 ◽  
Author(s):  
András Mihály ◽  
Balázs Németh ◽  
Péter Gáspár

The paper introduces a hardware-in-the-loop (HIL) vehicle simulator built for testing and tuning a look-ahead cruise control algorithm considering forward road conditions. The aim of the vehicle simulator, apart from conducting real-time demonstrations and tests, is to create a HIL architecture which can be directly applied to a real heavy-duty vehicle formerly represented in TruckSim. By this means, several otherwise expensive road tests can be implemented with the simulator to increase the efficiency and reliability of the developed look-ahead control method.

2017 ◽  
Vol 45 (3) ◽  
pp. 157 ◽  
Author(s):  
András Mihály ◽  
Márk Baranyi ◽  
Balázs Németh ◽  
Péter Gáspár

The paper introduces a hardware-in-the-loop (HIL) driving simulator with the implementation of a look-ahead cruise control considering forward road information. The vehicle dynamics are simulated real-time in the high fidelity heavy duty vehicle simulation environment TruckSim, while the proposed look-ahead control algorithm also runs real-time on dSPACE MicroAutoBox II. The latter functions as a vehicle electronic control unit (ECU) and is used for rapid control prototyping (RCP), hence the proposed look-ahead driver assistance system can be tested and tuned in a real-time HIL vehicle simulator before installing dSPACE MicroAutoBox II in a real vehicle.


Author(s):  
Miles J Droege ◽  
Brady Black ◽  
Shubham Ashta ◽  
John Foster ◽  
Gregory M Shaver ◽  
...  

Platooning heavy-duty trucks is a proven method to reduce fuel consumption on flat ground, but a significant portion of the U.S. highway system covers hilly terrain. The effort described in this paper uses experimentally gathered single truck data from a route with hilly terrain and an experimentally-validated two-truck platoon simulation framework to analyze control methods for effective platooning on hilly terrain. Specifically, this effort investigates two platoon control aspects: (1) the lead truck’s vehicle speed control and (2) the platoon’s transmission shifting algorithm. Three different types of lead truck speed control strategies are analyzed using the validated platoon model. Two are commercially available cruise control strategies – conventional constant set speed cruise control (CCC) and flexible set speed cruise control (FCC). The third lead truck speed control strategy was developed by the authors in this paper. It uses look-ahead grade information for an entire route to create an energy-optimal speed profile for the lead truck which is called long-horizon predictive cruise control (LHPCC). Then, a two-truck platoon transmission shifting strategy that coordinates the shift events – Simultaneous Shifting (SS) – is introduced and compared to a commercially available shifting strategy using the validated platoon model. This shifting strategy demonstrates further improvements in the platoon performance by improving the platoon gap control. A summary of these simulations demonstrates that the performance of the platoon can be improved by three methods: adding speed flexibility to the lead truck speed control method, using look-ahead road grade information to generate energy-optimal speed targets for the lead truck, and coordinating the timing of the transmission shifts for each truck in the platoon.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Bingshan Hu ◽  
Huanlong Chen ◽  
Liangliang Han ◽  
Hongliu Yu

The space station manipulator does lots of tasks with contact force/torque on orbit. To ensure the safety of the space station and the manipulator, the contact force/torque of manipulator must be controlled. Based on analyzing typical tasks’ working flows and force control requirements, such as ORU (orbit replacement unit) changeout and dual arm collaborative payload transport, an impedance control method based on wrist 6 axis force/torque feedback is designed. For engineering implementation of the impedance control algorithm, the discretization method and impedance control parameters selection principle are also studied. To verify the compliance control algorithm, a ground experiment platform adopting industrial manipulators is developed. In order to eliminate the influence of gravity, a real-time gravity compensation algorithm is proposed. Then, the correctness of real-time gravity compensation and force compliance control algorithm is verified on the experiment platform. Finally, the ORU replacement and dual arm collaborative payload transport experiments are done. Experimental results show that the force compliance control method proposed in this paper can control the contact force and torque at the end of the manipulator when executing typical tasks.


2015 ◽  
Vol 743 ◽  
pp. 164-167
Author(s):  
S. Liu ◽  
S.S. Shi ◽  
Z.W. Zhang ◽  
J.T. Chen ◽  
Z. Wang

The principle and control method of PCS circuit based on DSP2812 are introduced.The unified model of equations and simulation is built based on the topology of the circuit.The real-time simulation and directly generation of the control code is implemented using Embedded Coder of MATLAB toolbox.The integrated control and simulation design of control algorithm and dynamic process of PCS are implemented.


Author(s):  
Lixian Zhang ◽  
Xiao-shan Gao ◽  
Hongbo Li

In this paper, a multi-period turning interpolation algorithm, with real-time look-ahead scheme based on S-curve control method, is presented. In this interpolation algorithm, the geometric precision and the dynamic performance are both satisfied. The machining efficiency is improved by multi-period turning transition, and the precision is also improved by S-curve control method. The computational efficiency of this algorithm meets the need of real-time machining. In addition, there is no accumulated error. At last, this algorithm is verified the validation by the experiments on 3-axis CNC machine.


2017 ◽  
Vol 22 ◽  
pp. 561-569 ◽  
Author(s):  
Ingrid Johansson ◽  
Junchen Jin ◽  
Xiaoliang Ma ◽  
Henrik Pettersson

Sign in / Sign up

Export Citation Format

Share Document