scholarly journals A Neurocommunication Model between the Brain and Liver Regarding Glucose Production and Secretion in Early Morning Using GH-Method: Math-Physical Medicine (No. 324)

2020 ◽  
Vol 3 (3) ◽  

This article address the author’s hypothesis on the neurocommunication model existing between the brain and liver regarding production and glucose secretion in the early morning. This is based on the observation of the difference between glucose at wake up moment in the morning for the fasting plasma glucose (FPG), and glucose at the first bite of breakfast for the glucose at 0-minute or “open glucose” of postprandial plasma glucose (PPG). All of the eight identified glucoses of breakfast PPG are higher than the eight glucoses at time of wake up by a difference of an average of 8 mg/dL. The value difference using Method B of CGM sensor glucoses during the COVID-19 period offers the most accurate picture and credible glucose difference of 8 mg/dL between his FPG at wake-up moment and PPG at the first bite of breakfast. The author believes that the brain senses when a person wakes up due to different kinds of stimuli from many sources, including eye, environment, and even internal organs, which will alert the body to be in “active” mode requiring “energy” through glucose. Even though the person has not eaten anything or is not actively moving, the brain issues a marching order to the liver to produce or release glucose for the body to use in the forthcoming day. This hypothesis can currently explain why his glucose of eating his breakfast is ~8 mg/dL higher than his FPG at wakeup.

2020 ◽  
pp. 1-5
Author(s):  
Gerald C Hsu ◽  

This article address is the author’s hypothesis on the neurocommunication model existing between the brain and liver regarding production and glucose secretion in the early morning. This is based on the observation of the difference between glucose at wake up moment in the morning for the fasting plasma glucose (FPG), and glucose at the first bite of breakfast for the glucose at 0-minute or “open glucose” of postprandial plasma glucose (PPG)


In this paper, the author presents the results of his national segmentation pattern analysis of the sensor PPG data based on both high-carb and low-carb intake amounts. It also verified his earlier findings on the communication model between the brain and internal organs such as the stomach, liver, and pancreas.


2020 ◽  
pp. 1-5
Author(s):  
Gerald C Hsu ◽  

In this paper, the author described the progress on his two-year long special research project, from 5/5/2018 through 8/13/2020, to identify a neural communication model between the brain’s cerebral cortex and certain internal organs such as the stomach, liver, and pancreas. He used a continuous glucose monitor (CGM) sensor collected postprandial plasma glucose (PPG) data to investigate the glucose production amount at different timing and waveform differences between 95 liquid egg meals and 110 solid egg meals


After reviewing the research results for six months, from September 2019 through February 2020, the author identified a probable internal communication model between the nervous system and certain vital internal organs, specifically the stomach and liver regarding postprandial plasma glucose (PPG) production. The author used a continuous glucose monitor device to collect 50,000 glucose data during the past 665 days. He focused on studying the relationships among different food nutritional contents, cooking methods, food material’s physical phases, and different characteristics and variants from his glucose waveform patterns. In this study, he focused on the three major meal groups based on food nutritional ingredients, meal’s preparation, and cooking methods of eggs, squash, and cabbage to create soup-based (liquid) meal and pan-fried (solid) meal. The PPG waveforms from these three meal groups demonstrated that soup-based liquid food produced a much lower glucose value than the pan-fried solid food. Although both liquid and solid meals have similar identical nutritional ingredients, he questions why did this occur? His hypothesis is that his PPG differences are due to specific physical phase of his finished meal either “liquid” or “solid”, which is his ready-to-eat meal’s final physical “phase” that determines his PPG characteristics and waveforms. The author utilized his GH-Method: math-physical medicine (MPM) approach to explore a T2D patient’s glucose production situation from a scientific view of the brain and nervous system’s functionalities. If this specific approach and above interpretation are accurate, we can then “trick” our brain into producing a “lesser” amount of glucose after food intake without altering or sacrificing the needed food nutritional balance. As a result, T2D patients can simply change their cooking method in order to lower both of their peak PPG values and their average PPG levels.


After reviewing the research results for six months, from September 2019 through February 2020, the author identified a probable internal communication model between the nervous system and certain vital internal organs, specifically the stomach and liver regarding postprandial plasma glucose (PPG) production. The author used a continuous glucose monitor device to collect 50,000 glucose data during the past 665 days. He focused on studying the relationships among different food nutritional contents, cooking methods, food material’s physical phases, and different characteristics and variants from his glucose waveform patterns. In this study, he focused on the three major meal groups based on food nutritional ingredients, meal’s preparation, and cooking methods of eggs, squash, and cabbage to create soup-based (liquid) meal and pan-fried (solid) meal. The PPG waveforms from these three meal groups demonstrated that soup-based liquid food produced a much lower glucose value than the pan-fried solid food. Although both liquid and solid meals have similar identical nutritional ingredients, he questions why did this occur? His hypothesis is that his PPG differences are due to specific physical phase of his finished meal either “liquid” or “solid”, which is his ready-to-eat meal’s final physical “phase” that determines his PPG characteristics and waveforms. The author utilized his GH-Method: math-physical medicine (MPM) approach to explore a T2D patient’s glucose production situation from a scientific view of the brain and nervous system’s functionalities. If this specific approach and above interpretation are accurate, we can then “trick” our brain into producing a “lesser” amount of glucose after food intake without altering or sacrificing the needed food nutritional balance. As a result, T2D patients can simply change their cooking method in order to lower both of their peak PPG values and their average PPG levels.


1986 ◽  
Vol 56 (3) ◽  
pp. 545-554 ◽  
Author(s):  
A. J. H. Van Es ◽  
Lisette De Groot ◽  
J. E. Vogt

1. Complete 24 h energy and nitrogen balances were measured for eight subjects both while consuming a basal diet supplemented with 49 g saccharose/d (diet S) and while consuming the same basal diet but supplemented with 50 g lactitol monohydrate/d (diet L).2. The subjects ate the two diets for 8 d. Faeces and urine were collected for the final 4 d. Exchange of respiratory gases (oxygen, carbon dioxide, hydrogen and methane) was measured during the final 72 h while the subjects stayed in an open-circuit respiration chamber, 11 m3, and simulated office work. Before eating diet L, subjects ate 50 g lactitol daily for 10 d.3. On diets L and S, faecal moisture content averaged 0.787 and 0.753 g/g respectively, the difference being significant (P < 0.05). On diet L, energy and nitrogen digestibilities and energy metabolizability averaged 0, 922, 0.836 and 0-881 respectively, and on diet S 0.935, 0.869 and 0.896 respectively; the differences were also significant (P < 0.05). Urinary energy losses and N balances were not significantly different for the two diets.4. In all subjects only traces of methane were produced but hydrogen production differed significantly (P < 0.05) for diets L and S, being 2.3 and 0.4 litres (normal temperature and pressure)/d respectively.5. Intakes of metabolizable energy (ME) were corrected, within subjects, to energy equilibrium and equal metabolic body-weight. The corrected ME intakes did not show differences between diets. However, when on diet L the subjects were probably less active than when on diet S because differences within subjects of ankle actometer counts between diets showed a high correlation with the corresponding differences in corrected ME intakes (r 0.92). Further correction of ME intake toward equal actometer activity showed a significant (P < 0.05) difference between diets: for maintaining energy equilibrium 5.6 (SE 0.8; P < 0.05) % more ME from diet L was needed than from diet S. The reliability of this 5.6% difference depends on whether or not one ankle actometer gives an accurate picture of the subject's physical activity.6. The energy contribution to the body is clearly smaller from lactitol than from saccharose, certainly due to the effect of lactitol on digestion, and probably also due to the effect on the utilization of ME.


1959 ◽  
Vol 37 (1) ◽  
pp. 285-295 ◽  
Author(s):  
Florent Depocas

The size and space of the body glucose pool along with its turnover and oxidation rates have been measured in anesthetized 30° and 6 °C acclimated rats by a method involving continuous intravenous injection of small amounts of D-glucose uniformly labelled with C14 and attainment of relatively constant specific activities of plasma glucose and respiratory CO2. Values of glucose pool space in warm-acclimated rats (essentially normal animals) were in accord with those found in the dog by a similar method. Results obtained on warm-acclimated rats indicated that previous published values of turnover and oxidation rates of glucose for normal rats were high by a factor of approximately 2 to 4. There was, however, close agreement between the values of turnover time of body glucose pool measured by the continuous infusion procedure and those obtained by others with the single intravenous or intraperitoneal injection procedure. In cold-acclimated rats, average absolute values of glucose pool size were significantly smaller than in warm-acclimated rats but the difference was lost when results were related to body weight. Small, non-significant differences in values of glucose pool size per 100 g body weight and in plasma glucose concentration combined to give a significantly larger glucose space in cold-than in warm-acclimated rats. Glucose turnover and oxidation rates, the ratio between these two quantities, and the proportion of respiratory CO2 derived from glucose oxidation were not significantly different in the two groups of rats, thus indicating that cold acclimation is not associated with major alterations in glucose metabolism at least when studied on fully fed anesthetized animals at 30 °C.


2018 ◽  
Vol 2 (1) ◽  
pp. 01-03
Author(s):  
Navya K

Adrenal Gland The adrenal glands are controlled in part by the brain. The hypothalamus, a small area of the brain involved in hormonal regulation, produces corticotropin-releasing hormone (CRH) and vasopressin (also known as antidiuretic hormone). Vasopressin and CRH trigger the pituitary gland to secrete corticotropin (also known as adrenocorticotropic hormone or ACTH), which stimulates the adrenal glands to produce corticosteroids. The renin-angiotensin-aldosterone system, regulated mostly by the kidneys, causes the adrenal glands to produce more or less aldosterone. The body controls the levels of corticosteroids according to need. The levels tend to be much higher in the early morning than later in the day. When the body is stressed, due to illness or otherwise, the levels of corticosteroids increase dramatically.


To prove his hypothesis in this paper, the author interprets the brain stimulator and its associated simulation model of predicted breakfast postprandial plasma glucose (PPG) via a food or meal segmentation analysis and Sensor PPG waveform characteristics study.


Sign in / Sign up

Export Citation Format

Share Document