scholarly journals A Review of Energy Efficiency in Wireless Body Area/Sensor Networks, With Emphasis on MAC Protocol

2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Ogheneochuko Ubrurhe ◽  
Nigel Houlden ◽  
Peter S. Excell

The increasing use of wireless communication and the continuous miniaturisation of electronics devices have brought about the concept of Wireless Body Area Network (WBANs). In these types of networks, the sensor node operates in close proximity to the body and also the wireless nature of the system presents various novel, real-time and new methods to improve health care delivery. The sensor is capable of measuring any parameter which it has been designed to read, for example the heartrate and the body temperature. This paper presents a review of the concept of WBANs with a focus on the mechanism of data communication over the wireless medium. Further, it examines ways to power such devices, in particular focusing on minimisation of energy requirements, thereby reducing maintenance demands and contributing to making the environment ‘greener’.

Wireless Body Area Network (WBAN) is an exclusively designed Wireless Sensor Networks that used in today’s health-care system. The central challenge in WBAN is to transfer the medical data with limited energy and with high reliability. The IEEE 802.15.4 MAC Protocol is a standard model used to consume less energy by providing low data rate. This paper aimed to present a novel protocol PD-MAC, an enhanced version of IEEE 802.15.4 to achieve the above goal. The main objective of this protocol is to transmit the packets according to their priorities. It also improves the retransmission and packet drop process by introducing an additional slot to define Starvation Index in the super-frame of IEEE 802.15.4. A node has to start its transmission when the timer is set to zero. A node has to sense the channel status before transmission begins. The data are transmitted according to their priorities only when it senses the free channel. However if the channel is not free then retransmission of packet will be carried out and in each retransmission process the starvation index increments the priority of the packet. When the packet priority raises to high then it transmits the packet by considering it as high emergency packet. For energy efficiency a max limit is define to retransmit a data packet. This protocol has been simulated using Castalia 3.2 environment and the result validate that our proposed protocol provides better service in terms of least Packet Delay and lowest Energy Consumption to its counterparts.


Wireless Body Area Network (WBAN) is a collection of miniaturized sensing nodes and coordinator nodes. These sensing nodes are placed in, on and around the body for uninterrupted monitoring of physiological data for medical applications. The main application carrier of WBAN is the human body and due to human body movement and physiological changes, the WBAN traffic fluctuates greatly. This network traffic fluctuation requires good network adaptability. In addition to traffic fluctuations, energy consumption is another key problem with WBANs as sensing nodes are very small in size. This paper design a reliable protocol by extending the MAC protocol for reducing energy consumption, PAP algorithm to decide data transmission rate and JOAR algorithm to select the optimize path for the data transmission. The performance of the algorithm outperforms other state of art algorithms to shows its significance.


2016 ◽  
Vol 833 ◽  
pp. 185-189
Author(s):  
Nur Alia Athirah Mohtadzar ◽  
Shigeru Takayama

Exercise intensity is classified into vigorous, moderate and low type of exercise intensity. They are classified based upon the amount of energy used by the body while doing the activity. Vigorous or over exercise may leads to over tiredness and physical problem while low or lack of exercise may leads to unhealthy lifestyle. Therefore, moderate exercise or regular physical activity in daily life helps to improve overall health and fitness and reduces the risk for many chronic diseases.


2021 ◽  
Vol 12 (1) ◽  
pp. 140-158
Author(s):  
Raghvendra Singh ◽  
Kanad Ray ◽  
Preecha Yupapin ◽  
Jalil Ali

Ambient computing enabled for body area networks have received much consideration over the past couple of years due to its applications in biomedical, healthcare monitoring, and military systems. Such systems are attracting users in other applications like gaming, fitness, sports, and other life style tools. The fast-moving lifestyle of people impelled them in a situation of less consideration of their health and sports, and it generated the need of healthcare monitoring and tracking devices. Advances in wireless technology and embedded technology have generated keen interest in antenna, mounted on or around the body to transmit or receive the vital data of human body to on-body or off-body systems. The proposed antenna is for the use in wireless body area network (WBAN), in UWB frequency range 3.1 GHz.-10.6 GHz. Enhanced bandwidth ultra wideband (EB-UWB) patch antenna consists of the dimensions 30 mm×27 mm×1.6 mm. The prototype is fabricated and tested in free space and on-body scenario.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinesh Kumar Anguraj ◽  
Abul Bashar ◽  
R. Nidhya ◽  
P.K. Shimna ◽  
Renjith V. Ravi

PurposeThe purpose of this paper is energy consumption and security. To extend the sensor’s life span, saving the energy in a sensor is important. In this paper, biosensors are implanted or suited on the human body, and then, transposition has been applied for biosensors for reducing the sensor distance from the sink node. After transposition path loss has been calculated, security is maintained and also compared the results with the existing strategies.Design/methodology/approachNowadays, one of the most emergent technologies is wireless body area network (WBAN), which represents to improve the quality of life and also allow for monitoring the remote patient and other health-care applications. Traffic routing plays a main role together with the relay nodes, which is used to collect the biosensor’s information and send it towards the sink.FindingsTo calculate the distance and observe the position, Euclidean distance technique is used. Path loss is the main parameter, which is needed to reduce for making better data transmission and to make the network stability. Routing protocols can be designed, with the help of proposed values of sensors locations in the human body, which gives good stability of network and lifetime. It helps to achieve as the less deplete energy.Originality/valueThis scheme is compared with the two existing schemes and shows the result in terms of parameter path loss. Moreover, this paper evaluated a new method for improving the security in WBAN. The main goal of this research is to find the optimal sensor location on the body and select the biosensor positions where they can get less energy while transmitting the data to the sink node, increasing the life span in biosensors, decreasing memory space, giving security, controlling the packet complexity and buffer overflow and also fixing the damages in the existing system.


Sign in / Sign up

Export Citation Format

Share Document