scholarly journals Present Simulation and Future Typhoon Activity Projection over Western North Pacific and Taiwan/East Coast of China in 20-km HiRAM Climate Model

2016 ◽  
Vol 27 (5) ◽  
pp. 687-703 ◽  
Author(s):  
Chih-Hua Tsou ◽  
Pei-Yu Huang ◽  
Chia-Ying Tu ◽  
Cheng-Ta Chen ◽  
Teng-Ping Tzeng ◽  
...  
2016 ◽  
Vol 29 (12) ◽  
pp. 4487-4508 ◽  
Author(s):  
Haikun Zhao ◽  
Xianan Jiang ◽  
Liguang Wu

During boreal summer, vigorous synoptic-scale wave (SSW) activity, often evident as southeast–northwest-oriented wave trains, prevails over the western North Pacific (WNP). In spite of their active role for regional weather and climate, modeling studies on SSWs are rather limited. In this study, a comprehensive survey on climate model capability in representing the WNP SSWs is conducted by analyzing simulations from 27 recent general circulation models (GCMs). Results suggest that it is challenging for GCMs to realistically represent the observed SSWs. Only 2 models out of the 27 GCMs generally well simulate both the intensity and spatial pattern of the observed SSW mode. Plausible key processes for realistic simulations of SSW activity are further explored. It is illustrated that GCM skill in representing the spatial pattern of the SSW is highly correlated to its skill in simulating the summer mean patterns of the low-level convergence associated with the WNP monsoon trough and conversion from eddy available potential energy (EAPE) to eddy kinetic energy (EKE). Meanwhile, simulated SSW intensity is found to be significantly correlated to the amplitude of 850-hPa vorticity, divergence, and conversion from EAPE to EKE over the WNP. The observed modulations of SSW activity by the Madden–Julian oscillation are able to be captured in several model simulations.


2004 ◽  
Vol 17 (23) ◽  
pp. 4590-4602 ◽  
Author(s):  
Johnny C. L. Chan ◽  
Kin Sik Liu

Abstract Based on results from climate model simulations, many researchers have suggested that because of global warming, the sea surface temperature (SST) will likely increase, which will then lead to an increase in the intensity of tropical cyclones (TCs). This paper reports results of a study of the relationship between SST and observed typhoon activity (which is used as a proxy for the intensity of TCs averaged over a season) over the western North Pacific (WNP) for the past 40 yr. The average typhoon activity over a season is found to have no significant relationship with SST in the WNP but increases when the SST over the equatorial eastern Pacific Ocean is above normal. The mean annual typhoon activity is generally higher (lower) during an El Niño (La Niña) year. Such interannual variations of typhoon activity appear to be largely constrained by the large-scale atmospheric factors that are closely related to the El Niño–Southern Oscillation (ENSO) phenomenon. These large-scale dynamic and thermodynamic factors include low-level relative vorticity, vertical wind shear, and moist static energy. Such results are shown to be physically consistent with one another and with those from previous studies on the interannual variations of TC activity. The results emphasize the danger of drawing conclusions about future TC intensity based on current climate model simulations that are not designed to make such predictions.


2015 ◽  
Vol 29 (1) ◽  
pp. 381-398 ◽  
Author(s):  
W. Zhang ◽  
G. A. Vecchi ◽  
H. Murakami ◽  
G. Villarini ◽  
L. Jia

Abstract This study investigates the association between the Pacific meridional mode (PMM) and tropical cyclone (TC) activity in the western North Pacific (WNP). It is found that the positive PMM phase favors the occurrence of TCs in the WNP while the negative PMM phase inhibits the occurrence of TCs there. Observed relationships are consistent with those from a long-term preindustrial control experiment (1000 yr) of a high-resolution TC-resolving Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution (FLOR) coupled climate model. The diagnostic relationship between the PMM and TCs in observations and the model is further supported by sensitivity experiments with FLOR. The modulation of TC genesis by the PMM is primarily through the anomalous zonal vertical wind shear (ZVWS) changes in the WNP, especially in the southeastern WNP. The anomalous ZVWS can be attributed to the responses of the atmosphere to the anomalous warming in the northwestern part of the PMM pattern during the positive PMM phase, which resembles a classic Matsuno–Gill pattern. Such influences on TC genesis are strengthened by a cyclonic flow over the WNP. The significant relationship between TCs and the PMM identified here may provide a useful reference for seasonal forecasting of TCs and interpreting changes in TC activity in the WNP.


2008 ◽  
Vol 21 (12) ◽  
pp. 2960-2975 ◽  
Author(s):  
Huang-Hsiung Hsu ◽  
Ching-Hui Hung ◽  
An-Kai Lo ◽  
Chun-Chieh Wu ◽  
Chih-Wen Hung

Abstract By estimating the differences between the original and tropical cyclone (TC)-removed fields derived from the 40-yr (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR 40-Year Reanalysis, this study reveals that TCs contribute significantly (exceeding 50% in certain regions) to the seasonal mean and the intraseasonal and interannual variance of the 850-hPa vorticity along the TC tracks in the tropical western North Pacific. Similar effects on the precipitation are also seen, as presented by the examples located in Taiwan. While the low-frequency, large-scale circulation produces a clustering effect on TCs, the latter, which has a large positive vorticity and tends to occur in the positive vorticity background flow, significantly enhances the strength of the positive vorticity. The contribution from TCs, which is not offset by the synoptic systems with weak negative vorticity, can therefore leave marked footprints in the climate signal and variability. This effect is not removed by long-term averaging and low-pass filtering, which are often used to retrieve the climate perturbations. This study reveals that the climate variability, as it is defined, is not contributed to merely by the low-frequency large-scale fluctuations. Instead, the TC effect has to be taken into account to understand the climate variability in the tropical western North Pacific. Subsequently, the ensemble effect of TCs, at least in the statistical sense, has to be resolved in the climate model to obtain a better simulation of the climate variability in the TC-prone region, such as the tropical western North Pacific.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1214
Author(s):  
Doo-Sun R. Park ◽  
Hyeong-Seog Kim ◽  
Minho Kwon ◽  
Young-Hwa Byun ◽  
Maeng-Ki Kim ◽  
...  

Potential intensity (PI) is a metric for climate model evaluation of TC-related thermodynamic conditions. However, PI is utilized usually for assessing basin-wide TC-related thermodynamic conditions, and not for evaluating TC passage to a certain region. Here we evaluate model-simulated PI over the passage of TCs affecting South Korea (KOR PI) as well as the PI over the entire western North Pacific basin (WNP PI) using 25 CMIP5 and 27 CMIP6 models. In terms of pattern correlations and bias-removed root mean square errors, CMIP6 model performances for KOR PI are found to be noticeably improved over CMIP5 models in contrast to negligible improvement for WNP PI, although it is not in terms of normalized standard deviations. This implies that thermodynamic condition on the route of TCs affecting South Korea is likely better captured by CMIP6 models than CMIP5 models.


2007 ◽  
Vol 20 (11) ◽  
pp. 2378-2396 ◽  
Author(s):  
Markus Stowasser ◽  
Yuqing Wang ◽  
Kevin Hamilton

Abstract The influence of global warming on the climatology of tropical cyclones in the western North Pacific basin is examined using the high-resolution International Pacific Research Center (IPRC) regional climate model forced by ocean temperatures and horizontal boundary fields taken from the NCAR Community Climate System Model version 2 (CCSM2) coupled global climate model. The regional model is first tested in 10 yr of simulation with boundary forcing taken from observations and is shown to produce a reasonably good representation of the observed statistics of tropical cyclone numbers and locations. The model was then run for 10 yr with forcing from a present-day control run of the CCSM2 and then for 10 yr with forcing fields taken from the end of a long run with 6 times the present-day atmospheric CO2 concentration. The global-mean surface air temperature warming in the perturbed run is 4.5 K, while the surface warming in the tropical western North Pacific is about 3 K. The results of these experiments reveal no statistically significant change in basinwide tropical cyclone numbers in the peak season from July to October in response to the CO2 increase. However, a pronounced and statistically significant increase in tropical cyclone occurrence in the South China Sea is found. While the basinwide total number of storms remains nearly unchanged in the warm climate, there is a statistically significant increase in the average strength of the cyclones and in the number of the storms in the strongest wind categories.


Sign in / Sign up

Export Citation Format

Share Document