Tropical Cyclone Changes in the Western North Pacific in a Global Warming Scenario

2007 ◽  
Vol 20 (11) ◽  
pp. 2378-2396 ◽  
Author(s):  
Markus Stowasser ◽  
Yuqing Wang ◽  
Kevin Hamilton

Abstract The influence of global warming on the climatology of tropical cyclones in the western North Pacific basin is examined using the high-resolution International Pacific Research Center (IPRC) regional climate model forced by ocean temperatures and horizontal boundary fields taken from the NCAR Community Climate System Model version 2 (CCSM2) coupled global climate model. The regional model is first tested in 10 yr of simulation with boundary forcing taken from observations and is shown to produce a reasonably good representation of the observed statistics of tropical cyclone numbers and locations. The model was then run for 10 yr with forcing from a present-day control run of the CCSM2 and then for 10 yr with forcing fields taken from the end of a long run with 6 times the present-day atmospheric CO2 concentration. The global-mean surface air temperature warming in the perturbed run is 4.5 K, while the surface warming in the tropical western North Pacific is about 3 K. The results of these experiments reveal no statistically significant change in basinwide tropical cyclone numbers in the peak season from July to October in response to the CO2 increase. However, a pronounced and statistically significant increase in tropical cyclone occurrence in the South China Sea is found. While the basinwide total number of storms remains nearly unchanged in the warm climate, there is a statistically significant increase in the average strength of the cyclones and in the number of the storms in the strongest wind categories.

2017 ◽  
Vol 114 (6) ◽  
pp. 1258-1263 ◽  
Author(s):  
J. David Neelin ◽  
Sandeep Sahany ◽  
Samuel N. Stechmann ◽  
Diana N. Bernstein

Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.


Author(s):  
Bo-Joung Park ◽  
Seung-Ki Min ◽  
Evan Weller

Abstract Summer season has lengthened substantially across Northern Hemisphere (NH) land over the past decades, which has been attributed to anthropogenic greenhouse gas increases. This study examines additional future changes in summer season onset and withdrawal under 1.5℃ and 2.0℃ global warming conditions using multiple atmospheric global climate model (AGCM) large-ensemble simulations from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. Five AGCMs provide more than 100 runs of 10-year length for three experiments: All-Hist (current decade: 2006-2015), Plus15, and Plus20 (1.5℃ and 2.0℃ above pre-industrial condition, respectively). Results show that with 1.5℃ and 2.0℃ warmer conditions summer season will become longer by a few days to weeks over entire NH lands, with slightly larger contributions by delay in withdrawal due to stronger warming in late summer. Stronger changes are observed more in middle latitudes than high latitudes and largest expansion (up to three weeks) is found over East Asia and the Mediterranean. Associated changes in summer-like day frequency is further analyzed focusing on the extended summer edges. The hot days occur more frequently in lower latitudes including East Asia, USA and Mediterranean, in accord with largest summer season lengthening. Further, difference between Plus15 and Plus20 indicates that summer season lengthening and associated increases in hot days can be reduced significantly if warming is limited to 1.5℃. Overall, similar results are obtained from CMIP5 coupled GCM simulations (based on RCP8.5 scenario experiments), suggesting a weak influence of air-sea coupling on summer season timing changes.


2012 ◽  
Vol 1 (33) ◽  
pp. 23
Author(s):  
Sota Nakajo ◽  
Nobuhito Mori ◽  
Tomohiro Yasuda ◽  
Hajime Mase

Recently high-resolution Global Climate Model (GCM) shows that global climate changes may cause the future change of the Tropical Cyclone (TC) characteristics, such as frequency, developing process and intensity. However, there are two difficulties for assessment of future TC disaster, one is uncertainty of future prediction in GCM, and another is shortage of sample TC data. In this paper, we estimated future changes of TC properties and reduced uncertainty by ensemble averaging of multi-GCM prediction results, and generated many synthetic TC data with Global Stochastic Tropical Cyclone Model (GSTCM). In addition, GSTCM which have empirical temporal correlation algorithm was improved for the reproducibility of arrival TC statistics by cluster analysis of TC data. This upgrade could pave the way to local future prediction of TC disaster.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2021 ◽  
pp. 1-47

Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud-radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free-atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid-to-high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.


2021 ◽  
pp. 1-43
Author(s):  
Aaron Match ◽  
Stephan Fueglistaler

AbstractGlobal warming projections of dynamics are less robust than projections of thermodynamics. However, robust aspects of the thermodynamics can be used to constrain some dynamical aspects. This paper argues that tropospheric expansion under global warming (a thermodynamical process) explains changes in the amplitude of the Quasi-Biennial Oscillation (QBO) in the lower and middle stratosphere (a dynamical process). A theoretical scaling for tropospheric expansion of approximately 6 hPa K−1 is derived, which agrees well with global climate model (GCM) experiments. Using this theoretical scaling, the response of QBO amplitude to global warming is predicted by shifting the climatological QBO amplitude profile upwards by 6 hPa per Kelvin of global warming. In global warming simulations, QBO amplitude in the lower- to mid-stratosphere shifts upwards as predicted by tropospheric expansion. Applied to observations, the tropospheric expansion framework suggests a historical weakening of QBO amplitude at 70 hPa of 3% decade−1 from 1953-2020. This expected weakening trend is half of the 6% decade−1 from 1953-2012 detected and attributed to global warming in a recent study. The previously reported trend was reinforced by record low QBO amplitudes during the mid-2000s, from which the QBO has since recovered. Given the modest weakening expected on physical grounds, past decadal modulations of QBO amplitude are reinterpreted as a hitherto unrecognized source of internal variability. This large internal variability dominates over the global warming signal, such that despite 65 years of observations, there is not yet a statistically significant weakening trend.


Sign in / Sign up

Export Citation Format

Share Document