scholarly journals Corrosion Resistance of Dissimilar Welds between Ferritic Stainless Steel with High Corrosion Resistance and Austenitic Stainless Steels

2001 ◽  
Vol 50 (6) ◽  
pp. 273-278
Author(s):  
Jun-ichi Hamada ◽  
Michio Nakata ◽  
Hiroshige Inoue ◽  
Osamu Ikegami
Alloy Digest ◽  
2010 ◽  
Vol 59 (6) ◽  

Abstract ArcelorMittal K36X is a ferritic stainless steel, mostly used as a stable price lower cost substitute for nickel containing austenitic stainless steels for corrosion applications. The “X” indicates this alloy is a muffler grade. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1068. Producer or source: Arcelor Stainless Processing LLC.


Materia Japan ◽  
1996 ◽  
Vol 35 (5) ◽  
pp. 573-575 ◽  
Author(s):  
Yoshihiro Yazawa ◽  
Takumi Ujiro ◽  
Susumu Satoh ◽  
Makoto Kobayashi ◽  
Koji Yamato

Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract ALLOY 0Cr25Ni6Mo3CuN is one of four grades of duplex stainless steel that were developed and have found wide applications in China since 1980. In oil refinement and the petrochemical processing industries, they have substituted for austenitic stainless steels in many types of equipment, valves, and pump parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-706. Producer or source: Central Iron & Steel Research Institute.


Alloy Digest ◽  
2014 ◽  
Vol 63 (11) ◽  

Abstract UGI 209 is an austenitic stainless steel with high corrosion resistance and a low magnetic permeability. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-1192. Producer or source: Schmolz + Bickenbach USA Inc..


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract CarTech 347 is a niobium+tantalum stabilized austenitic stainless steel. Like Type 321 austenitic stainless steel, it has superior intergranular corrosion resistance as compared to typical 18-8 austenitic stainless steels. Since niobium and tantalum have stronger affinity for carbon than chromium, carbides of those elements tend to precipitate randomly within the grains instead of forming continuous patterns at the grain boundaries. CarTech 347 should be considered for applications requiring intermittent heating between 425 and 900 °C (800 and 1650 °F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1339. Producer or source: Carpenter Technology Corporation.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1845
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

Low-temperature nitriding allows to improve surface hardening of austenitic stainless steels, maintaining or even increasing their corrosion resistance. The treatment conditions to be used in order to avoid the precipitation of large amounts of nitrides are strictly related to alloy composition. When nickel is substituted by manganese as an austenite forming element, the production of nitride-free modified surface layers becomes a challenge, since manganese is a nitride forming element while nickel is not. In this study, the effects of nitriding conditions on the characteristics of the modified surface layers obtained on an austenitic stainless steel having a high manganese content and a negligible nickel one, a so-called nickel-free austenitic stainless steel, were investigated. Microstructure, phase composition, surface microhardness, and corrosion behavior in 5% NaCl were evaluated. The obtained results suggest that the precipitation of a large volume fraction of nitrides can be avoided using treatment temperatures lower than those usually employed for nickel-containing austenitic stainless steels. Nitriding at 360 and 380 °C for duration up to 5 h allows to produce modified surface layers, consisting mainly of the so-called expanded austenite or gN, which increase surface hardness in comparison with the untreated steel. Using selected conditions, corrosion resistance can also be significantly improved.


2011 ◽  
Vol 674 ◽  
pp. 159-163 ◽  
Author(s):  
Maciej Tulinski ◽  
Mieczyslaw Jurczyk

In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites were synthesized by mechanical alloying (MA), heat treatment and nitriding of elemental microcrystalline Fe, Cr, Mn and Mo powders with addition of hydroxyapatite (HA). Microhardness and corrosion tests' results of obtained materials are presented. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Decreasing the corrosion current density is a distinct advantage for prevention of ion release and it leads to better cytocompatibility. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g. orthopedic implants.


Sign in / Sign up

Export Citation Format

Share Document