scholarly journals Surface Modification of a Nickel-Free Austenitic Stainless Steel by Low-Temperature Nitriding

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1845
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

Low-temperature nitriding allows to improve surface hardening of austenitic stainless steels, maintaining or even increasing their corrosion resistance. The treatment conditions to be used in order to avoid the precipitation of large amounts of nitrides are strictly related to alloy composition. When nickel is substituted by manganese as an austenite forming element, the production of nitride-free modified surface layers becomes a challenge, since manganese is a nitride forming element while nickel is not. In this study, the effects of nitriding conditions on the characteristics of the modified surface layers obtained on an austenitic stainless steel having a high manganese content and a negligible nickel one, a so-called nickel-free austenitic stainless steel, were investigated. Microstructure, phase composition, surface microhardness, and corrosion behavior in 5% NaCl were evaluated. The obtained results suggest that the precipitation of a large volume fraction of nitrides can be avoided using treatment temperatures lower than those usually employed for nickel-containing austenitic stainless steels. Nitriding at 360 and 380 °C for duration up to 5 h allows to produce modified surface layers, consisting mainly of the so-called expanded austenite or gN, which increase surface hardness in comparison with the untreated steel. Using selected conditions, corrosion resistance can also be significantly improved.

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 604 ◽  
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

When low temperature nitriding of austenitic stainless steels is carried out, it is very important to remove the surface passive layer for obtaining homogeneous incorporation of nitrogen. In the glow-discharge nitriding technique this surface activation is performed by cathodic sputtering pre-treatment, which can heat also the samples up to nitriding temperature. This preliminary study investigates the possibility of producing modified surface layers on austenitic stainless steels by performing low pressure glow-discharge treatments with nitrogen, similar to cathodic sputtering, so that surface activation, heating and nitrogen incorporation can occur in a single step having a short duration (up to about 10 min). Depending on treatment parameters, it is possible to produce different types of modified surface layers. One type, similar to that obtained with low temperature nitriding, consists mainly of S phase and it shows improved surface hardness and corrosion resistance in 5% NaCl solution in comparison with the untreated steel. Another type has large amounts of chromium nitride precipitates, which cause a marked hardness increase but a poor corrosion resistance. These surface treatments influence also water wetting properties, so that the apparent contact angle values become >90°, indicating a hydrophobic behavior.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract CarTech 347 is a niobium+tantalum stabilized austenitic stainless steel. Like Type 321 austenitic stainless steel, it has superior intergranular corrosion resistance as compared to typical 18-8 austenitic stainless steels. Since niobium and tantalum have stronger affinity for carbon than chromium, carbides of those elements tend to precipitate randomly within the grains instead of forming continuous patterns at the grain boundaries. CarTech 347 should be considered for applications requiring intermittent heating between 425 and 900 °C (800 and 1650 °F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1339. Producer or source: Carpenter Technology Corporation.


2013 ◽  
Vol 718-720 ◽  
pp. 29-32 ◽  
Author(s):  
Xiao Liu ◽  
Yu Bo

The anodic polarization curves of 21Cr-11Ni austenitic stainless steels with various RE contents in 3.5% NaCl neutral solutions have been measured by electrochemical methods. The effect of RE on pitting corrosion resistance of 21Cr-11Ni stainless steels has been studied by the metallographic examination. The results show that sulfide and other irregular inclusions are modified to round or oval-shaped RE2O2S and RES after adding RE to 21Cr-11Ni stainless steesl. RE makes sulfide, and other irregular inclusions change to dispersed round or oval-shaped RE inclusions, effectively inhibits the occurrence of pitting corrosion, thereby enhancing the corrosion resistance of 21Cr-11Ni austenitic stainless steels.


2012 ◽  
Vol 706-709 ◽  
pp. 2217-2221
Author(s):  
Tadashi Nishihara

Metastable austenitic stainless steels are attractive industrial materials with excellent corrosion resistance, mechanical properties, and formability. However, during plastic deformation, α’martensite can be formed. The volume fraction of that particular phase influences the mechanical and other properties (such as corrosion resistance) of these steels. Therefore, it is important to determine the amount of α’martensite in the obtained microstructures. Currently, the volume fraction of deformation-induced martensite in stainless steel is most commonly measured by the X-ray diffraction or magnetic permeability methods. In this study, a novel method of measuring deformation-induced martensite using magnetic contact holding force is proposed. Measurement trials were carried out using a prototype measuring system, and the results of measurements taken from SUS301 and SUS304 stainless steels are discussed in terms of deformation and martensite volume fraction.


2007 ◽  
Vol 539-543 ◽  
pp. 4891-4896 ◽  
Author(s):  
P. Antoine ◽  
B. Soenen ◽  
Nuri Akdut

Transformation of austenite to martensite during cold rolling operations is widely used to strengthen metastable austenitic stainless steel grades. Static strain aging (SSA) phenomena at low temperature, typically between 200°C and 400°C, can be used for additional increase in yield strength due to the presence of α’-martensite in the cold rolled metastable austenitic stainless steels. Indeed, SSA in austenitic stainless steel affects mainly in α’-martensite. The SSA response of three industrial stainless steel grades was investigated in order to understand the aspects of the aging phenomena at low temperature in metastable austenitic stainless steels. In this study, the optimization of, both, deformation and time-temperature parameters of the static aging treatment permitted an increase in yield strength up to 300 MPa while maintaining an acceptable total elongation in a commercial 301LN steel grade. Deformed metastable austenitic steels containing the “body-centered” α’-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature. Therefore, the carbon redistribution during aging at low temperature is explained in terms of the microstructural changes in austenite and martensite.


2011 ◽  
Vol 312-315 ◽  
pp. 994-999 ◽  
Author(s):  
Riza Karadas ◽  
Ozgur Celik ◽  
Huseyin Cimenoglu

Nitriding is as an effective technique applied for many years to improve the surface hardness and wear resistance of low carbon and tool steels [1]. In the case of stainless steels, increase of surface hardness and wear resistance accompany by a drop in corrosion resistance due to the precipitation of CrN. In this respect, many attempts have been made to modify the surfaces of austenitic stainless steels to increase their surface hardness and wear resistance without scarifying the corrosion resistance [2-6]. It is finally concluded that, nitriding at temperatures lower than conventional nitriding process (which is generally about 550°C) has potentiality to produce a nitrogen expanded austenite (also known as S-phase), on the surface without formation of CrN. Due to the superb properties of the S-phase, the low temperature nitrided austenitic stainless steels exhibit very high surface hardness, a good wear resistance, and more importantly, an excellent corrosion resistance. Recently some attempts have been made to apply low temperature nitriding to martensitic stainless steels, which are widely used in the industries of medicine, food, mold and other civil areas [7-9]. In these works, where nitriding has been conducted by plasma processes, superior surface hardness, along with excellent wear and corrosion resistances have been reported for AISI 410 and AISI 420 grade martensitic stainless steels. This work focuses on low temperature gas nitriding of AISI 420 grade martensitic stainless steel in a fluidized bed reactor. In this respect the microstructures, phase compositions, hardness, wear and corrosion behaviours of the original and nitrided martensitic stainless steels have been compared.


2011 ◽  
Vol 228-229 ◽  
pp. 114-118 ◽  
Author(s):  
Shao Mei Zheng ◽  
Cheng Zhao

Plasma carburizing of AISI 316L austenitic stainless steel was carried out at low temperature to improve the surface hardness without degradation of its corrosion resistance. And the post-treatment, namely electrochemical surface brightening process was carried out to clear away a layer of thin black film on the plasma carburized samples and improve the surface quality of the hardened stainless steel. The surface appearance, roughness, microstructures, microhardness and corrosion resistance of the samples before and after brightening were analyzed and compared. Experimental results of plasma carburizing at low temperature showed that high-quality hardened layers can be produced at the appropriate process parameters.The electrochemical brightening process can be used as a post-treatment to restore the original color and further improve the corrosion resisitance of the plasma carburized stainless steel.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Kenzo Sumiya ◽  
Shinkichi Tokuyama ◽  
Akio Nishimoto ◽  
Junichi Fukui ◽  
Atsushi Nishiyama

Low-temperature active-screen plasma nitriding (ASPN) was applied in this study to improve the bending rigidity and corrosion resistance of a small-diameter thin pipe composed of austenitic stainless steel (SUS 304). The inner and outer diameters of the pipe were ϕ0.3 and ϕ0.4 mm, respectively, and the pipe length was 50 mm. The jig temperature was measured using a thermocouple and was adopted as the nitriding temperature because measuring the temperature of a small-diameter pipe is difficult. The nitriding temperature was varied from 578 to 638 K to investigate the effect of temperature on the nitriding layer and mechanical property. The nitriding layer thickness increased with an increase in nitriding temperature, reaching 15 μm at 638 K. The existence of expanded austenite (S phase) in this nitriding layer was revealed using the X-ray diffraction pattern. Moreover, the surface hardness increased with the nitriding temperature and took a maximum value of 1100 HV above 598 K. The bending load increased with an increase in the nitriding temperature in relation to the thicker nitriding layer and increased surface hardness. The nitrided samples did not corrode near the center, and corrosion was noted only near the tip at high nitriding temperatures of 618 and 638 K in a salt spray test. These results indicated that the bending rigidity of the small-diameter thin pipe composed of austenitic stainless steel was successfully improved using low-temperature ASPN while ensuring corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document