scholarly journals Topological Indices of Some Classes of Thorn Complete and Wheel Graphs

2021 ◽  
Vol 11 (1) ◽  
pp. 3305-3321

We have multiple real numbers that describe chemical descriptors in the field of Graph theory. These descriptors constitute the entire structure of a graph, which possesses an actual chemical structure. Among these, the main focus of topological indices is that they are associated with many non-identical physiochemical properties of chemical compounds. Also, the biological properties of chemical compounds can be established by the topological indices. In this analysis, we compute the Reciprocal Randic index〖(R〗^(-1)), Reduced Reciprocal Randic index(〖RR〗^(-1)), Atom-bond Connectivity index(ABC) and the geometric arithmetic index(GA) of thorn graphs are obtained theoretically.

2021 ◽  
Vol 6 (12) ◽  
pp. 13887-13906
Author(s):  
Fei Yu ◽  
◽  
Hifza Iqbal ◽  
Saira Munir ◽  
Jia Bao Liu ◽  
...  

<abstract><p>In the chemical industry, topological indices play an important role in defining the properties of chemical compounds. They are numerical parameters and structure invariant. It is a proven fact by scientists that topological properties are influential tools for interconnection networks. In this paper, we will use stellation, medial and bounded dual operations to build transformed networks from zigzag and triangular benzenoid structures. Using M-polynomial, we compute the first and second Zagreb indices, second modified Zagreb indices, symmetric division index, general Randic index, reciprocal general Randic index. We also calculate atomic bond connectivity index, geometric arithmetic index, harmonic index, first and second Gourava indices, first and second hyper Gourava indices.</p></abstract>


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiujun Zhang ◽  
Muhammad Naeem ◽  
Abdul Qudair Baig ◽  
Manzoor Ahmad Zahid

Topological indices give immense information about a molecular structure or chemical structure. The hardness of materials for the indentation can be defined microscopically as the total resistance and effect of chemical bonds in the respective materials. The aim of this paper is to study the hardness of some superhard B C x crystals by means of topological indices, specifically Randić index and atom-bond connectivity index.


2017 ◽  
Vol 82 (2) ◽  
pp. 151-162
Author(s):  
Uzma Ahmad ◽  
Sarfraz Ahmad ◽  
Rabia Yousaf

In QSAR/QSPR studies, topological indices are utilized to predict the bioactivity of chemical compounds. In this paper, the closed forms of different Zagreb indices and atom?bond connectivity indices of regular dendrimers G[n] and H[n] in terms of a given parameter n are determined by using the automorphism group action. It was reported that these connectivity indices are correlated with some physicochemical properties and are used to measure the level of branching of the molecular carbon-atom skeleton.


2017 ◽  
Vol 95 (2) ◽  
pp. 134-143 ◽  
Author(s):  
M. Javaid ◽  
Masood Ur Rehman ◽  
Jinde Cao

For a molecular graph, a numeric quantity that characterizes the whole structure of a graph is called a topological index. In the studies of quantitative structure – activity relationship (QSAR) and quantitative structure – property relationship (QSPR), topological indices are utilized to guess the bioactivity of chemical compounds. In this paper, we compute general Randić, first general Zagreb, generalized Zagreb, multiplicative Zagreb, atom-bond connectivity (ABC), and geometric arithmetic (GA) indices for the rhombus silicate and rhombus oxide networks. In addition, we also compute the latest developed topological indices such as the fourth version of ABC (ABC4), the fifth version of GA (GA5), augmented Zagreb, and Sanskruti indices for the foresaid networks. At the end, a comparison between all the indices is included, and the result is shown with the help of a Cartesian coordinate system.


2016 ◽  
Vol 94 (6) ◽  
pp. 559-565 ◽  
Author(s):  
Shehnaz Akhter ◽  
Muhammad Imran

Topological descriptors are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity, and geometric–arithmetic are used to predict the bioactivity of different chemical compounds. There are certain types of topological descriptors such as degree-based topological indices, distance-based topological indices, counting-related topological indices, etc. Among degree-based topological indices, the so-called atom–bond connectivity and geometric–arithmetic are of vital importance. These topological indices correlate certain physicochemical properties such as boiling point, stability, strain energy, etc., of chemical compounds. In this paper, analytical closed formulas for Zagreb indices, multiplicative Zagreb indices, harmonic index, and sum-connectivity index of the strong product of graphs are determined.


2015 ◽  
Vol 93 (7) ◽  
pp. 730-739 ◽  
Author(s):  
Abdul Qudair Baig ◽  
Muhammad Imran ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study different interconnection networks and derive analytical closed results of the general Randić index (Rα(G)) for α = 1, [Formula: see text], –1, [Formula: see text] only, for dominating oxide network (DOX), dominating silicate network (DSL), and regular triangulene oxide network (RTOX). All of the studied interconnection networks in this paper are motivated by the molecular structure of a chemical compound, SiO4. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices and give closed formulae of these indices for these interconnection networks.


2019 ◽  
Vol 3 (2) ◽  
pp. 27-35
Author(s):  
Fazal Dayan ◽  
Muhammad Javaid ◽  
Muhammad Aziz ur Rehman

Naji et al. introduced the leap Zagreb indices of a graph in 2017 which are new distance-degree-based topological indices conceived depending on the second degree of vertices. In this paper, we have defined the first and second leap reduced reciprocal Randic index and leap reduced second Zagreb index for selected wheel related graphs.


2016 ◽  
Vol 94 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Syed Ahtsham Ul Haq Bokhary ◽  
Muhammad Imran ◽  
Sadia Manzoor

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as the Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of different chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study the degree-based molecular topological indices such as ABC4 and GA5 for certain families of dendrimers. We derive the analytical closed formulae for these classes of dendrimers.


2016 ◽  
Vol 94 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Muhammad Imran ◽  
Abdul Qudair Baig ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its molecular topology and are usually graph invariant. In a QSAR/QSPR study, the physico-chemical properties and topological indices such as the Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this important area of research. All of the studied interconnection networks in this paper are constructed by the Star of David network. In this paper, we study the general Randić, first Zagreb, ABC, GA, ABC4 and GA5, indices for the first, second, and third types of dominating David derived networks and give closed formulas of these indices for these networks. These results are useful in network science to understand the underlying topologies of these networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nadeem Salamat ◽  
Muhammad Kamran ◽  
Shahbaz Ali ◽  
Md. Ashraful Alam ◽  
Riaz Hussain Khan

In order to make quantitative structure-movement/property/danger relations, topological indices (TIs) are the numbers that are related to subatomic graphs. Some fundamental physicochemical properties of chemical compounds, such as breaking point, protection, and strain vitality, correspond to these TIs. In the compound graph hypothesis, the concept of TIs was developed in view of the degree of vertices. In investigating minimizing exercises of Star of David, these indices are useful. In this study, we explore the different types of Zagreb indices, Randić indices, atom-bond connectivity indices, redefined Zagreb indices, and geometric-arithmetic index for the Star of David. The edge partitions of this network are tabled based on the sum of degrees-of-end vertices and the sum of degree-based edges. To produce closed formulas for some degree-based network TIs, these edge partitions are employed.


Sign in / Sign up

Export Citation Format

Share Document