scholarly journals On topological properties of dominating David derived networks

2016 ◽  
Vol 94 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Muhammad Imran ◽  
Abdul Qudair Baig ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its molecular topology and are usually graph invariant. In a QSAR/QSPR study, the physico-chemical properties and topological indices such as the Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this important area of research. All of the studied interconnection networks in this paper are constructed by the Star of David network. In this paper, we study the general Randić, first Zagreb, ABC, GA, ABC4 and GA5, indices for the first, second, and third types of dominating David derived networks and give closed formulas of these indices for these networks. These results are useful in network science to understand the underlying topologies of these networks.

2015 ◽  
Vol 93 (7) ◽  
pp. 730-739 ◽  
Author(s):  
Abdul Qudair Baig ◽  
Muhammad Imran ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study different interconnection networks and derive analytical closed results of the general Randić index (Rα(G)) for α = 1, [Formula: see text], –1, [Formula: see text] only, for dominating oxide network (DOX), dominating silicate network (DSL), and regular triangulene oxide network (RTOX). All of the studied interconnection networks in this paper are motivated by the molecular structure of a chemical compound, SiO4. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices and give closed formulae of these indices for these interconnection networks.


2018 ◽  
Vol 7 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Adnan Aslam ◽  
Muhammad Kamran Jamil ◽  
Wei Gao ◽  
Waqas Nazeer

AbstractA numerical number associated to the molecular graphGthat describes its molecular topology is called topological index. In the study ofQSARandQSPR, topological indices such as atom-bond connectivity index, Randić connectivity index, geometric index, etc. help to predict many physico-chemical properties of the chemical compound under study. Dendrimers are macromolecules and have many applications in chemistry, especially in self-assembly procedures and host-guest reactions. The aim of this report is to compute degree-based topological indices, namely the fourth atom-bond connectivity index and fifth geometric arithmetic index of poly propyl ether imine, zinc porphyrin, and porphyrin dendrimers.


2016 ◽  
Vol 94 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Syed Ahtsham Ul Haq Bokhary ◽  
Muhammad Imran ◽  
Sadia Manzoor

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as the Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of different chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study the degree-based molecular topological indices such as ABC4 and GA5 for certain families of dendrimers. We derive the analytical closed formulae for these classes of dendrimers.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 42 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Kashif Shafiq ◽  
Haidar Ali ◽  
Asim Naseem ◽  
Nayab Maryam ◽  
...  

A topological index is a numerical representation of a chemical structure, while a topological descriptor correlates certain physico-chemical characteristics of underlying chemical compounds besides its numerical representation. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity, and biological activity are determined by the chemical applications of graph theory. The biological activity of chemical compounds can be constructed by the help of topological indices such as atom-bond connectivity (ABC), Randić, and geometric arithmetic (GA). In this paper, Randić, atom bond connectivity (ABC), Zagreb, geometric arithmetic (GA), ABC4, and GA5 indices of the mth chain silicate S L ( m , n ) network are determined.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 619 ◽  
Author(s):  
Jia-Bao Liu ◽  
Haidar Ali ◽  
Muhammad Shafiq ◽  
Usman Munir

A Topological index also known as connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as Randić, atom-bond connectivity (ABC) and geometric-arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study HDCN1(m,n) and HDCN2(m,n) of dimension m , n and derive analytical closed results of general Randić index R α ( G ) for different values of α . We also compute the general first Zagreb, ABC, GA, A B C 4 and G A 5 indices for these Hex derived cage networks for the first time and give closed formulas of these degree-based indices.


2018 ◽  
Vol 74 (1-2) ◽  
pp. 35-43
Author(s):  
Wei Gao ◽  
Muhammad Kamran Siddiqui ◽  
Najma Abdul Rehman ◽  
Mehwish Hussain Muhammad

Abstract Dendrimers are large and complex molecules with very well defined chemical structures. More importantly, dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core. Topological indices are numbers associated with molecular graphs for the purpose of allowing quantitative structure-activity relationships. These topological indices correlate certain physico-chemical properties such as the boiling point, stability, strain energy, and others, of chemical compounds. In this article, we determine hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for hetrofunctional dendrimers, triangular benzenoids, and nanocones.


2019 ◽  
Vol 49 (4) ◽  
pp. 219-224
Author(s):  
M. H. Muhammad ◽  
Juan Luis Garcia Guirao ◽  
N. A. Rehman ◽  
M. K. Siddiqui

A molecular graph can be transformed using map operations, one of these, named Capra, being defined by Diudea (2005). Topological indices are closely related to the toxicological, physicochemical, pharmacological properties of a chemical compound. These topological indices correlate certain physico-chemical properties like boiling point, stability and strain energy of chemical compounds. In this paper, we focus on the Silicate SiO2 layer structure and the structure of Capra-designed planar benzenoid series , (). We determined Zagreb type indices, Forgotten index, Augmented index and Balaban index for these structures.


2021 ◽  
Vol 6 (12) ◽  
pp. 13887-13906
Author(s):  
Fei Yu ◽  
◽  
Hifza Iqbal ◽  
Saira Munir ◽  
Jia Bao Liu ◽  
...  

<abstract><p>In the chemical industry, topological indices play an important role in defining the properties of chemical compounds. They are numerical parameters and structure invariant. It is a proven fact by scientists that topological properties are influential tools for interconnection networks. In this paper, we will use stellation, medial and bounded dual operations to build transformed networks from zigzag and triangular benzenoid structures. Using M-polynomial, we compute the first and second Zagreb indices, second modified Zagreb indices, symmetric division index, general Randic index, reciprocal general Randic index. We also calculate atomic bond connectivity index, geometric arithmetic index, harmonic index, first and second Gourava indices, first and second hyper Gourava indices.</p></abstract>


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuhong Huo ◽  
Haidar Ali ◽  
Muhammad Ahsan Binyamin ◽  
Syed Sheraz Asghar ◽  
Usman Babar ◽  
...  

In theoretical chemistry, the numerical parameters that are used to characterize the molecular topology of graphs are called topological indices. Several physical and chemical properties like boiling point, entropy, heat formation, and vaporization enthalpy of chemical compounds can be determined through these topological indices. Graph theory has a considerable use in evaluating the relation of various topological indices of some derived graphs. In this article, we will compute the topological indices like Randić, first Zagreb, harmonic, augmented Zagreb, atom-bond connectivity, and geometric-arithmetic indices for chain hex-derived network of type 3 CHDN3(m,n) for different cases of m and n. We will also compute the numerical computation and graphical view to justify our results.Mathematics Subject Classification: 05C12, 05C90


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lei Ding ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Masood Ur Rehman ◽  
Usman Ali ◽  
Hirra Mubeen ◽  
...  

A topological index is a numeric quantity assigned to a graph that characterizes the structure of a graph. Topological indices and physico-chemical properties such as atom-bond connectivity ABC , Randić, and geometric-arithmetic index GA are of great importance in the QSAR/QSPR analysis and are used to estimate the networks. In this area of research, graph theory has been found of considerable use. In this paper, the distinct degrees and degree sums of enhanced Mesh network, triangular Mesh network, star of silicate network, and rhenium trioxide lattice are listed. The edge partitions of these families of networks are tabled which depend on the sum of degrees of end vertices and the sum of the degree-based edges. Utilizing these edge partitions, the closed formulae for some degree-based topological indices of the networks are deduced.


Sign in / Sign up

Export Citation Format

Share Document