scholarly journals Density Functional Theory Study of Bone Tissues: the Role of Water in Conferring Bone Strength

2020 ◽  
Vol 2 (2) ◽  
pp. 25

The unsurpassed mechanical properties of biomaterials stem from the intricate organization of inorganic and organic matter across length scales. In bone, water facilitates this organization, thereby playing an important structural role in addition to being a nutrient and waste transport medium. Water makes 10% of mammalian bone tissues and can be found in one of two states: bound (to the mineral phase) or mobile. While experimental studies were able to directly link the amount of bound water to bone strength, a molecular understanding of the interactions between the mineral (hydroxyapatite), organic (collagen) phase, and water is missing. In this talk, I will provide new insights into the water adsorption properties of bone tissues. I will present DFT calculations of water adsorption energy as a function of the environment, which includes an explicit solvent and human collagen fragments. I will show that the environment - rather than the mineral surface itself-governs the adsorption strength and mode. In particular, I will show that conditions consistent with aging tissues are associated with a lower density of adsorbed water molecules, which is a sign of weaker bones.

2014 ◽  
Vol 19 (4) ◽  
pp. 235-240
Author(s):  
Jun Hu ◽  
Xiao-yong Fan ◽  
Chao-Ming Wang

The absorption and possible reaction paths during corrosion have been systematically identified at the molecular level by us-ing density functional theory calculations. The results show that the co-adsorbed water molecule has a two-fold impact on the corrosive kinetics process. The one is the solvation effect, where water molecule affects the various reactions through ion dipole interaction, without bond fracture and formation. Another is the H-transfer mediator, where the bond of co-adsorbed water molecule breaks and regenerates in order to transfer hydrogen atoms.


2016 ◽  
Vol 120 (30) ◽  
pp. 16767-16781 ◽  
Author(s):  
Sriram Goverapet Srinivasan ◽  
Radha Shivaramaiah ◽  
Paul R. C. Kent ◽  
Andrew G. Stack ◽  
Alexandra Navrotsky ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3249 ◽  
Author(s):  
In Kim ◽  
Han Seul Kim ◽  
Hoon Ryu

Strong piezoresistivity of InAsP nanowires is rationalized with atomistic simulations coupled to Density Functional Theory. With a focal interest in the case of the As(75%)-P(25%) alloy, the role of crystal phases and phosphorus atoms in strain-driven carrier conductance is discussed with a direct comparison to nanowires of a single crystal phase and a binary (InAs) alloy. Our analysis of electronic structures presents solid evidences that the strong electron conductance and its sensitivity to external tensile stress are due to the phosphorous atoms in a Wurtzite phase, and the effect of a Zincblende phase is not remarkable. With several solid connections to recent experimental studies, this work can serve as a sound framework for understanding of the unique piezoresistive characteristics of InAsP nanowires.


2019 ◽  
Vol 84 (8) ◽  
pp. 861-876 ◽  
Author(s):  
Bojana Ostojic ◽  
Dragana Djordjevic

The molecular properties of the environmental mutagens nitrofluoranthenes (NFs; 1-, 2-, 3-, 7- and 8-NF), such as (hyper)polarizability, dipole moment, molecular electrostatic potential (MEP), spectroscopic characteristics, magnetic index (NICS) and others, obtained by means of ab initio (MP2) and density functional theory (DFT) approaches have been correlated with the observed mutagenic activities. A very good linear correlation (Rav = 0.99) between average polarizability (<?>) and experimental mutagenic activities of NFs in different Salmonella typhimurium strains from two independent experimental studies (Vance and Levin, Environ. Mutagen. 6 (1984) 797 and Zielinska et al., Mutation Res. 206 (1988) 131) was established. Higher values of polarizability derivatives with respect to the vsNO+CN vibrational coordinate for 8-NF and 3-NF compared to 1-NF and 7-NF and, consequently, higher Raman activities in the spectra that are in correlation with mutagenic activities, implicate significant intermolecular interactions along this vibrational coordinate. The results indicate that the binding of NFs to enzymes is the main step in mutagenic pathway of these nitro derivatives.


2020 ◽  
Author(s):  
Tulin Okbinoglu ◽  
Pierre Kennepohl

Molecules containing sulfur-nitrogen bonds, like sulfonamides, have long been of interest due to their many uses and chemical properties. Understanding the factors that cause sulfonamide reactivity is important, yet their continues to be controversy regarding the relevance of S-N π bonding in describing these species. In this paper, we use sulfur K-edge x-ray absorption spectroscopy (XAS) in conjunction with density functional theory (DFT) to explore the role of S<sub>3p</sub> contributions to π-bonding in sulfonamides, sulfinamides and sulfenamides. We explore the nature of electron distribution of the sulfur atom and its nearest neighbors and extend the scope to explore the effects on rotational barriers along the sulfur-nitrogen axis. The experimental XAS data together with TD-DFT calculations confirm that sulfonamides, and the other sulfinated amides in this series, have essentially no S-N π bonding involving S<sub>3p</sub> contributions and that electron repulsion and is the dominant force that affect rotational barriers.


2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


Sign in / Sign up

Export Citation Format

Share Document