scholarly journals Substantiating the optimal type of mine working fastening based on mathematical modeling of the stress condition of underground structures

Author(s):  
A.K Matayev ◽  
V.H Lozynskyi ◽  
A Musin ◽  
R.M Abdrashev ◽  
A.S Kuantay ◽  
...  

Purpose. Predicting the formation of a stress-strain state (SSS) in the rock mass within the boundaries of influence of stope operations on the horizon -480 m in axes 2028 at the 10th Anniversary of Kazakhstans Independence (DNK) Mine. Methodology. An engineering-geological data on the host rocks properties are analyzed based on the international ISRM standard. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the compound support (roof-bolt+shotcrete+mesh) and arch support used at the mine are performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the rock mass state. Findings. The calculations performed indicate that the support resistance is incommensurably low in comparison with the values of the initial stress field components in the rock mass. In such conditions, it may be more effective to strengthen the mass in the vicinity of mine working than setting more frames or using more massive support profiles. Originality. The paper presents the results of mathematical modeling and calculation of the stress-strain state of the underground supporting aquifer rock mass structures developed for complex mining-and-geological and geomechanical conditions of driving, supporting and operating mine workings on deep horizons of the mines at Donskoy Ore Mining and Processing Plant. Based on the performed research, the preliminary (advanced) strengthening of the border rock mass in the zone of inelastic (destructive) deformations has been substantiated, as a priority method to control the stability of mine workings. Practical value. The research results can be used when creating a geomechanical model of the field and designing stable parameters of mine working support.

2019 ◽  
Vol 123 ◽  
pp. 01006 ◽  
Author(s):  
Iryna Kovalevska ◽  
Zenon Pilecki ◽  
Oleksandr Husiev ◽  
Vasyl Snihur

The degree of influence has been determined of diversified deformation-strength characteristics of load-bearing elements in the fastening system of the preparatory mine workings, while maintaining them in a laminal massif of soft rocks. The analysis has been performed of multivariate computational experiments of the stress-strain state of the load-bearing elements of the fastening system in the preparatory mine workings from the position of the mutual influence of their deformation-strength characteristics and the support loading as a whole. An analysis is represented of the mutual influence of the operation modes of the mine working support elements between themselves and the fastening system as a whole; it has been studied the stress-strain state of the mine working fastening system with a central hydraulic prop stay, as well as a significant increase in reliability of the support performance has been analysed and determined. The tendency has been substantiated of minimizing the load on the mine working fastening system – increasing the coherence of the diversified operation modes of fastening elements by enhancing preferentially the yielding property of the rigid element. The application has been substantiated of the central yielding prop stays of the strengthening support of a frame in case of intensive rock pressure manifestation in the zone of the stope works active influence.


2018 ◽  
Vol 60 ◽  
pp. 00020 ◽  
Author(s):  
Vira Prykhodko ◽  
Nataliia Ulanova ◽  
Oleksandr Haidai ◽  
Dina Klymenko

The paper proposes a method to determine of a coal seam roof falling step basing upon the analysis of stress and strain state of the rock mass area with mine workings formed as a result of coal preparatory and extraction operations. A boundary element method has been applied to define stress and strain state (SSS). Fissuring of enclosing rocks was modeled by means of transversal-isotropic medium. Dependence of destructed rocks zone height within the roof of a seam being mined upon the weakening of the rock mass due to its fissuring and mine working geometry has been determined. Effect of fissility on the periodical roof falling step has been studied. Changes in support loads in the process of stope advance have been determined. A scheme of partial backfilling of the worked out area has been proposed to maintain the support in its working order.


2021 ◽  
Vol 15 (1) ◽  
pp. 103-111
Author(s):  
Azamat Matayev ◽  
Ainash Kainazarova ◽  
Ibatolla Arystan ◽  
Yerkebulan Abeuov ◽  
Arman Kainazarov ◽  
...  

Purpose. Predicting the stress-strain state (SSS) of the rock mass in the zone of stope operations influence using the self-caving mining system and the calculation of the load-bearing capacity of mine workings support at the 10th Anniversary of Kazakhstan’s Independence mine. Methods. An engineering-geological data complex of the host rocks properties has been analyzed. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the support types used at the mine have been performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the mass state. The Hoek-Brown model with its distinctive advantage of nonlinearity is used as a model for the mass behaviour. Findings. The values of the main stresses and load on the support have been obtained. According to the numerical analysis results of the rock mass stress-strain state at a depth of 900 m (horizon -480 m), the principal stresses are close to hydrosta-tic ones σ1 = σ2 = σz = 24.8 MPa. Predicting assessment of mine workings stability margin is performed before and after stope operations. Based on its results, it can be assumed that the stability margin of the mine workings driven in the stope zone is below the minimum permissible, therefore, caving and an increase in the load on the support are possible. Abutment pressure on mine workings support at a mining depth of 900 m (-480 m) has been calculated. The parameters of support in mine workings driven at the horizon -480 m have been calculated. Originality.The nature and peculiarities of patterns of the stress-strain state formation within the boundaries of various stope operations influence in blocks 20-28 at the horizon -480 m have been determined. The quantitative assessment of the values of loads on the support of haulage cross-cuts of the horizon mining is given. Practical implications. The research results can be used for creating a geomechanical model of the field and to design stable parameters of mine workings support. Keywords: stress-strain state, principal stresses, support, mine, ore, rock mass


2021 ◽  
Vol 330 ◽  
pp. 01009
Author(s):  
Anastasiya Nikitina ◽  
Dmitriy Borzykh ◽  
Sergey Rib ◽  
Aleksandra Lesnykh ◽  
Tonglin Zhao

In the process of numerical studies, the stress-strain state of the rock massif around the mine working driven at a depth of 600 m was determined. The article presents the analysis of the distribution of total vertical and horizontal stresses isolines in the working roof, as well as the ratio of the residual strength of rocks to the initial. The influence of the roof bolting on the displacement of working contour was established. Dangerous zones in the near-contour rocks of preparatory working were identified. The maximum exposure area of unsecured part of the roof during driving the workings in seam 3-3a was established.


Sign in / Sign up

Export Citation Format

Share Document