scholarly journals Assessment of the mutual influence of deformation-strength characteristics of the fastening system elements

2019 ◽  
Vol 123 ◽  
pp. 01006 ◽  
Author(s):  
Iryna Kovalevska ◽  
Zenon Pilecki ◽  
Oleksandr Husiev ◽  
Vasyl Snihur

The degree of influence has been determined of diversified deformation-strength characteristics of load-bearing elements in the fastening system of the preparatory mine workings, while maintaining them in a laminal massif of soft rocks. The analysis has been performed of multivariate computational experiments of the stress-strain state of the load-bearing elements of the fastening system in the preparatory mine workings from the position of the mutual influence of their deformation-strength characteristics and the support loading as a whole. An analysis is represented of the mutual influence of the operation modes of the mine working support elements between themselves and the fastening system as a whole; it has been studied the stress-strain state of the mine working fastening system with a central hydraulic prop stay, as well as a significant increase in reliability of the support performance has been analysed and determined. The tendency has been substantiated of minimizing the load on the mine working fastening system – increasing the coherence of the diversified operation modes of fastening elements by enhancing preferentially the yielding property of the rigid element. The application has been substantiated of the central yielding prop stays of the strengthening support of a frame in case of intensive rock pressure manifestation in the zone of the stope works active influence.

2020 ◽  
pp. 45-54
Author(s):  
Viktor Nosenko ◽  
Ostap Kashoida

Comparison of the stress-strain state of vertical elements of the frame of a monolithic house (basement, first and fourth floors), depending on the method of modeling the soil environment and piles, is carried out. The use of pile foundations is due to the fact that they provide the transfer of loads to deeper soil layers and, as a rule, a greater bearing capacity compared to shallow foundations. In the design of foundations, engineers face the question of how to model the soil environment and piles? This paper presents the influence of the decision taken (the selected soil model and the method of modeling piles) on the stress-strain state of the vertical load-bearing elements of the house frame. Comparison of the stress-strain state of vertical elements of the frame (basement, first and fourth floors), which were obtained using the following models of the system «base - pile foundation - overhead supporting structures»: 1) the piles are modeled by single-node finite elements, have only vertical stiffness according to the results of testing the piles for vertical static pressing loads, the mutual influence of piles and soil characteristics are not taken into account (FE-56 hereinafter, this is the number of the finite element in the library of elements of the PС «Lira -SAPR») 2) the piles are modeled by single-node finite elements, are located with a given step along the length of the pile and have rigidity in different directions and approximately take into account the surrounding soil around the pile and under its tip (FE-57); 3) the soil environment is modeled by volumetric elastic finite elements; piles - rod finite elements. It is shown that the choice of the foundation model carries stress-strain state not only for the foundation structures, but also for the vertical bearing elements of the house. When using various options for modeling the base: using a single-node finite element that simulates a smoke like elastic ligature (FE-56), using a chain of single-node skinned elements (FE-57), or a volumetric soil massif, it is possible to obtain quantitative differences in stresses from 2 to 20%, and a qualitative change, which is observed in a change in the sign of bending moments.  


2021 ◽  
Vol 330 ◽  
pp. 01009
Author(s):  
Anastasiya Nikitina ◽  
Dmitriy Borzykh ◽  
Sergey Rib ◽  
Aleksandra Lesnykh ◽  
Tonglin Zhao

In the process of numerical studies, the stress-strain state of the rock massif around the mine working driven at a depth of 600 m was determined. The article presents the analysis of the distribution of total vertical and horizontal stresses isolines in the working roof, as well as the ratio of the residual strength of rocks to the initial. The influence of the roof bolting on the displacement of working contour was established. Dangerous zones in the near-contour rocks of preparatory working were identified. The maximum exposure area of unsecured part of the roof during driving the workings in seam 3-3a was established.


Author(s):  
A.K Matayev ◽  
V.H Lozynskyi ◽  
A Musin ◽  
R.M Abdrashev ◽  
A.S Kuantay ◽  
...  

Purpose. Predicting the formation of a stress-strain state (SSS) in the rock mass within the boundaries of influence of stope operations on the horizon -480 m in axes 2028 at the 10th Anniversary of Kazakhstans Independence (DNK) Mine. Methodology. An engineering-geological data on the host rocks properties are analyzed based on the international ISRM standard. Numerical modelling of the rock mass stress-strain state and the calculation of the load-bearing capacity of the compound support (roof-bolt+shotcrete+mesh) and arch support used at the mine are performed with the help of the RS2 software. This program, based on the Finite Element Method in a two-dimensional formulation, makes it possible to take into account a significant number of factors influencing the rock mass state. Findings. The calculations performed indicate that the support resistance is incommensurably low in comparison with the values of the initial stress field components in the rock mass. In such conditions, it may be more effective to strengthen the mass in the vicinity of mine working than setting more frames or using more massive support profiles. Originality. The paper presents the results of mathematical modeling and calculation of the stress-strain state of the underground supporting aquifer rock mass structures developed for complex mining-and-geological and geomechanical conditions of driving, supporting and operating mine workings on deep horizons of the mines at Donskoy Ore Mining and Processing Plant. Based on the performed research, the preliminary (advanced) strengthening of the border rock mass in the zone of inelastic (destructive) deformations has been substantiated, as a priority method to control the stability of mine workings. Practical value. The research results can be used when creating a geomechanical model of the field and designing stable parameters of mine working support.


1980 ◽  
Vol 16 (1) ◽  
pp. 6-10
Author(s):  
V. F. Trumbachev ◽  
O. K. Slavin ◽  
G. K. Kuchuashvili

2018 ◽  
Vol 22 (4) ◽  
pp. 66-74 ◽  
Author(s):  
A. A. Vasilkin

In steel tanks made by the method of rolling, defects of a geometric shape often occur in the area of the welded welded joint of the wall. Subsequently, in these areas, as a result of low cycle fatigue, an unacceptable defect appears in the form of a crack, which makes it necessary to remove the reservoir from operation and carry out a set of measures for its repair. To determine the terms of safe operation of vertical steel tanks with geometric defects, it is proposed to use the methodology control of the actions of structures of load-bearing structures, one of the directions of which is the regulation of the stress-strain state of steel structures. To implement the possibility of regulating construction, it is necessary to identify such parameters, the change of which will give the maximum effect in achieving the set goals. As the indicated parameters, the design characteristics (material properties, design scheme, geometric characteristics) and factors of external influences (load, operating conditions) can act. To regulate the stress-strain state design of vertical steel tanks, the following regulators are proposed: product loading height, wall deflection arrow and permissible number of tank loading cycles. By numerical calculation of the VAT of the vertical steel tank design with geometric defects, the necessary values and values of the stress state are determined. Further, using known analytical dependencies from the field of fracture mechanics, it is possible to determine the permissible number of loading cycles of the reservoir before the appearance of a crack-like defect. The application of the methodology control of the actions of structures load-bearing structures, by means of a certain change in the established control parameters, allows increasing the number of loading cycles of the reservoir, thereby increasing the period of safe operation of the defective reservoir and thereby increasing the economic efficiency of the tank farm.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022030
Author(s):  
A V Kramskoi ◽  
Y G Lyudmirsky ◽  
M E Zhidkov ◽  
M I Kramskaia

Abstract To extend the service life of nuclear reactors, witness samples from the shells of the core of the reactor vessel are placed in their core. According to the requirements in force in the industry, the reference samples are loaded into the reactor plant unloaded up to the design stresses. This can lead to a biased assessment of the possible extension of the reactor’s life. In connection with the above, in order to assess the mutual influence of operating factors and the stress-strain state of the base metal and welded joints on embrittlement, the reference specimens must be loaded with a force that causes the maximum possible stresses in the specimens during the operation of the reactor. On the basis of domestic and international experience, a test procedure, design and loading scheme for compact witness samples are proposed for modeling and assessing the mutual influence of operating factors and stress-strain state on the object under study (VVER power reactor vessel). For VVER RPVs, the duration of the additional service life should be confirmed by the justification that by the end of the additional service life, the fracture toughness values of the base metal and metal of the welded seams located in the irradiation zone will allow without destruction to withstand all operational and emergency loads, as well as loads at hydraulic tests.


World Science ◽  
2019 ◽  
Vol 1 (1(41)) ◽  
pp. 11-14
Author(s):  
O. V. Boіko ◽  
A. O. Boiadzhi ◽  
O. M. Korshak

In this work the use of wooden I-beams with OSB wall as the load bearing elements for polygonal arch coverings of buildings of various spans are considered. Special steel connecting pieces can shape the polygonal arch coverings. Calculations of the constructions with a span of 12 and 18 meters and an analysis of their stress-strain state are given.


Sign in / Sign up

Export Citation Format

Share Document