roof falling
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 9)

H-INDEX

1
(FIVE YEARS 0)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 110
Author(s):  
Wankui Bu ◽  
Hui Xu ◽  
Ming Ji

In the process of underground mining, steeply inclined rocks or coal seams are often encountered, forming the openings of right-angle trapezoid. According to the geological conditions of a mining project in China, an analytical elastic solution of stress and displacement around right-angle trapezoidal opening in a homogeneous, isotropic, and linear elastic geomaterial is presented, which is based on the evaluation of the conformal mapping representation by an appropriate numerical calculation and the complex potential functions. The different results from other shaped openings are shown as follows. In a right-angle trapezoidal opening, the maximum displacements of roof falling occur on the low side, while the most horizontal displacements on the low side are around the roof and the most horizontal displacements on the high side are around the middle of the high side in this opening. These results are also compared with the numerical calculations in FLAC software, illustrating that the solution may be easily applied to rock mechanics or rock engineering for understanding the deformation of floor heave and roof falling down. The solution is also suitable for optimum design of bolt supporting in a right-angle trapezoidal opening, which is different from the traditional concept of symmetrical bolt supporting. Finally, a methodology is proposed for the estimation of conformal mapping coefficients for a given cross-sectional shape of an opening without symmetrical axis.


2021 ◽  
Vol 129 ◽  
pp. 105723
Author(s):  
Jiaqi Wang ◽  
Qiang Zhang ◽  
Jixiong Zhang ◽  
Hengfeng Liu ◽  
Gaolei Zhu ◽  
...  

Author(s):  
A. B. Petrovsky ◽  
V. Ya. Prushak ◽  
E. A. Lutovich

The geological structure and the physical-mechanical properties of rocks composing and overlapping the Third potash formation in the areas of the mine field mine No. 4 JSC Belaruskali, which are scheduled to practice, are studied. The geological sections of the Third potash layer and its roof were built, the thickness of sylvinite and halite layers was measured, the roof falling of the rocks of the layer with a height of up to 20 m was assessed, and the type of immediate roof was determined by the composition and structure of its constituent rocks. It was established that the strength under uniaxial compression of both sylvinite and halite layers for the areas under consideration differs slightly. Therefore, to solve engineering problems of ensuring the stability of mine workings and to calculate fastening parameters, strength values averaged over the groups of layers can be used that correlate well with the percentage of weak and clay interlayers. The same applies to Poisson’s ratio, the values of which for various layers of formation are slightly different and can be taken by their averaging. It is shown that the main factor that negatively affects the strength of rocks occurring in the roof of the Third potash seam is the presence of weak and clay interlayers, which increases with depth. The introduction of the obtained results allows us to improve the calculation accuracy of securing mining parameters, to reduce the costs of their maintenance, and to improve the safety of mining operations in developing the Third potash formation in complex geological and mining conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoxu Gao ◽  
Xinyu Shi ◽  
Weibin Guo

Because of daily maintenance, equipment damage, gas overrun, and other force majeure factors, the continuous stopping of the working face causes the roof pressure to accumulate, which leads to causing accidents such as coal wall spalling and roof falling. To address the roof safety problem caused by continuous stoppages, the 620 working face in the Huangling mining area is taken as the research object. Through field measurement, theoretical analysis, numerical simulation, and other research methods, the influence and mechanism of stopping pressure under different rates of advance are studied. The results show that the velocity factor of roof load transfer is positively correlated with the advancing velocity of the working face; the reasonable length of the suspended roof is mainly affected by the number of caving holes and the effect of pressure relief; and comparing the two stages of advance speed of 4.8 m/d and 12.8 m/d, the periodic weighting step distance of the latter increases by 24.4% compared with the former, and the rate of increase of support load caused by stopping mining increases by 42.1% compared with the former. The roof pressure accumulation caused by stopping mining is increased. Taking appropriate measures for local forced caving of the working face can release the roof pressure and reduce the risk of local caving of the working face. The study can provide a theoretical basis for roof control of continuous stopping under similar engineering conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Li ◽  
Yuqi Ren ◽  
Nan Wang ◽  
Junbo Luo ◽  
Na Li ◽  
...  

Mining pressure behavior in the process of longwall panel face passing through the parallel abandoned roadways (PARs) is different from the ordinary longwall panel face. It is easy to induce the accident of roof falling, coal wall spalling, and crush accident of shield. In order to reduce the occurrence of mine pressure accidents and ensure safe mining, a new mining method named “swing-inclined” mining method was proposed and was employed in the E13103 of Cuijiazhai coal mine. Based on the process of the longwall panel face passing through the PARs, a long-span and multisupport mass-structure model of the roof was established. The maximum support capacity of shield was calculated combined with stability relation between “roof-shield-PAR-‘similar pillar (SP)’-coal wall.” It provided the basis for determining the reasonable support capacity of shield. Moreover, the sensitivity analysis of influenced factors to the maximum support capacity of shield was carried out by using Matlab software. The sensitivity analysis results indicated that different factors had a different effect on the support capacity of shield. And, the process of passing through the PARs can be divided into 3 stages, depending on the relation between support capacity of shield and width of SP. In different stages, the change degree of support capacity of shield was different. The support capacity of shield is mainly influenced by the hanging distance of the main roof and the horizontal distance between the support point of the coal wall and the breaking position of the main roof. By on-site measurement, the sensitivity analysis results were verified.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shizhong Zhang ◽  
Gangwei Fan ◽  
Ling Chai ◽  
Qizhen Li ◽  
Mingwei Chen ◽  
...  

The roof falling accident is a serious threat to the lives of miners in deep coal mining, especially when the coal mine is more than 1000 meters deep. In regard to the 5306 coalface in the Tangkou coal mine, Shandong, China, the depth of coal seam is 992.8 m and the stress concentration coefficient of the roadway surrounding rock is 3.33. This leads to a serious deformation of the roadway roof, thereby producing a high risk of the roof falling disaster. In this pursuit, based on the mechanical analysis of roadway roof subjected to a high abutment pressure, the mathematical expressions of the setting load and movable column length of supports were introduced. Furthermore, the stability control mechanism of the roadway roof was analyzed and the optimized support parameters of supports are provided. The results showed that the longtime effective support of the roadway roof required the strength and deformation coupling of supports and anchored surrounding rock. The support length of the belt roadway should be at least 57.7 m, with 0-30 m away from the coalface supported by hydraulic supports and 32-57.7 m supported by single props. In addition, the maximum setting load and movable column length of hydraulic supports were 21.67 MPa and 280.3 mm and 12.44 MPa and 177.1 mm for single props, respectively. By applying the optimized support parameters of supports to the belt roadway of the 5306 coalface, the effective control of the roadway roof and the disaster control of roof falling were realized.


2021 ◽  
Vol 12 (2) ◽  
pp. 455-476
Author(s):  
Evgeniy A. Erbakhaev ◽  
◽  
Maxim V. Kratenko ◽  

The article examines the problem of compensation for harm caused in the process of using a building and structure. Attention is paid to the side of the defendant in relation to apartment buildings and non-residential buildings, the distribution of liability in the case of a plurality of tortfeasors, the regulation of third-party liability issues by the contract. A comparative analysis of the legislation of the Russian Federation and the People’s Republic of China regulating the liability of building’s owners (users) and contractors involved in the maintenance of a building as well as court practice is conducted. The choice of the Chinese legal system is due to the presence of special rules in Tort Liability Law of China (2009). According to the results of the study, the authors have formulated a number of proposals, in particular: to unify the legal regime for residential and non-residential buildings for the purposes of compensation for harm caused to third parties; to differentiate the liability for harm caused by the destruction of a building (its structural components) and damage due to items falling out from the building (snow or ice falling from the roof, falling advertising designs, objects being thrown out of the building, etc.), to allow the contractual regulation of owner’s liability provided that the victim is given the right to choose the defendant (the building’s owner or the maintenance company, the contractor involved). The authors also argue in favor of a codified act as a source of tort law, which will ensure consistent regulation of the studied relations.


2020 ◽  
Vol 57 (4) ◽  
pp. 111-115
Author(s):  
Go SATO ◽  
Hiroshi YAGI ◽  
Kunihiro NITTA ◽  
Jun UMEMURA ◽  
Kazunori SANPEI ◽  
...  
Keyword(s):  

2018 ◽  
Vol 60 ◽  
pp. 00020 ◽  
Author(s):  
Vira Prykhodko ◽  
Nataliia Ulanova ◽  
Oleksandr Haidai ◽  
Dina Klymenko

The paper proposes a method to determine of a coal seam roof falling step basing upon the analysis of stress and strain state of the rock mass area with mine workings formed as a result of coal preparatory and extraction operations. A boundary element method has been applied to define stress and strain state (SSS). Fissuring of enclosing rocks was modeled by means of transversal-isotropic medium. Dependence of destructed rocks zone height within the roof of a seam being mined upon the weakening of the rock mass due to its fissuring and mine working geometry has been determined. Effect of fissility on the periodical roof falling step has been studied. Changes in support loads in the process of stope advance have been determined. A scheme of partial backfilling of the worked out area has been proposed to maintain the support in its working order.


Sign in / Sign up

Export Citation Format

Share Document