Study on candidate genes for milk production traits of Red Chittagong Cattle

2020 ◽  
Vol 26 (1-2) ◽  
pp. 1-7
Author(s):  
MP Mostari ◽  
MYA Khan

The study was carried out on Stearoyl-CoA desaturase (SCD,) diacylglycerolacyltransferase-1 (DGAT1) and ATP-binding cassette G2 (ABCG2) genes which are responsible for variation in milk production traits (milk yield, fat yield, protein yield, and SNF yield) in cattle. These genes were used as candidate genes in Red Chittagong Cattle (RCC) breed of Bangladesh Livestock Research Institute (BLRI) herd for detection of single nucleotide polymorphisms (SNPs) causing variation in milk production traits. Focusing on the effects of SNPs on milk production traits, phenotypic variation within RCC breed was identified and categorized based on milk production traits. Average lactation yield varied from 527 to 1436 kg (n=29) per lactation. About 18% of lactating cows showed an average of >1000 kg per lactation. Average fat percent ranged from 4.71 to 6.25 (n=15). Eighteen (18) set of primers were designed to amplify targeted regions of SCD, DGAT1 and ABCG2 genes, where 8 set from DGAT1, 6 set from SCD and 4 set from ABCG2 gene. Pooled DNA from 50 RCC cows and 5 RCC bulls were used in sequencing. In sequence analysis, the SCD, DGAT1 and ABCG2 alleles found fixed in RCC. This study suggests an evidence that RCC breed has fixed alleles with respect to SCD, DGAT1 and ABCG2 genes reported to be responsible for higher milk fat yield, higher fat and protein percent. Bang. J. Livs. Res. Vol. 26 (1&2), 2019: P. 1-7

2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Thierry Tribout ◽  
Pascal Croiseau ◽  
Rachel Lefebvre ◽  
Anne Barbat ◽  
Mekki Boussaha ◽  
...  

Abstract Background Over the last years, genome-wide association studies (GWAS) based on imputed whole-genome sequences (WGS) have been used to detect quantitative trait loci (QTL) and highlight candidate genes for important traits. However, in general this approach does not allow to validate the effects of candidate mutations or determine if they are truly causative for the trait(s) in question. To address these questions, we applied a two-step, within-breed GWAS approach on 15 traits (5 linked with milk production, 2 with udder health, and 8 with udder morphology) in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cattle. We detected the most-promising candidate variants (CV) using imputed WGS of 2515 MON, 2203 NOR, and 6321 HOL bulls, and validated their effects in three younger populations of 23,926 MON, 9400 NOR, and 51,977 HOL cows. Results Bull sequence-based GWAS detected 84 QTL: 13, 10, and 30 for milk production traits; 3, 0, and 2 for somatic cell score (SCS); and 8, 2 and 16 for udder morphology traits, in MON, NOR, and HOL respectively. Five genomic regions with effects on milk production traits were shared among the three breeds whereas six (2 for production and 4 for udder morphology and health traits) had effects in two breeds. In 80 of these QTL, 855 CV were highlighted based on the significance of their effects and functional annotation. The subsequent GWAS on MON, NOR, and HOL cows validated 8, 9, and 23 QTL for production traits; 0, 0, and 1 for SCS; and 4, 1, and 8 for udder morphology traits, respectively. In 47 of the 54 confirmed QTL, the CV identified in bulls had more significant effects than single nucleotide polymorphisms (SNPs) from the standard 50K chip. The best CV for each validated QTL was located in a gene that was functionally related to production (36 QTL) or udder (9 QTL) traits. Conclusions Using this two-step GWAS approach, we identified and validated 54 QTL that included CV mostly located within functional candidate genes and explained up to 6.3% (udder traits) and 37% (production traits) of the genetic variance of economically important dairy traits. These CV are now included in the chip used to evaluate French dairy cattle and can be integrated into routine genomic evaluation.


2018 ◽  
Vol 85 (2) ◽  
pp. 133-137
Author(s):  
Tingxian Deng ◽  
Xiaoya Ma ◽  
Chunying Pang ◽  
Shasha Liang ◽  
Xingrong Lu ◽  
...  

The study reported in this Research Communication was conducted to investigate the molecular characterisation of buffalo SCAP gene, expression analysis, and the association between single nucleotide polymorphisms and milk production traits in 384 buffaloes. Sequence analysis revealed the SCAP gene had an open reading frame of 3837 bp encoding 1279 amino acids. A ubiquitous expression profile of SCAP gene was detected in various tissues with extreme predominance in the mammary gland during early lactation. Moreover, eleven SNPs in buffalo SCAP gene were identified, six of them (g.1717600A>G, g.1757922C>T, g.1758953G>A, g.1759142C>T, g.1760740G>A, and g.1766036T>C) were found to be significantly associated with 305-day milk yield. Thus, buffalo SCAP could sever as a candidate gene affecting milk production traits in buffalo and the identified SNPs might potentially be genetic markers.


2013 ◽  
Vol 157 (1) ◽  
pp. 93-99 ◽  
Author(s):  
G. Mancini ◽  
E.L. Nicolazzi ◽  
A. Valentini ◽  
G. Chillemi ◽  
P. Ajmone Marsan ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 449 ◽  
Author(s):  
Bo Han ◽  
Yuwei Yuan ◽  
Yanhua Li ◽  
Lin Liu ◽  
Dongxiao Sun

We previously used the RNA sequencing technique to detect the hepatic transcriptome of Chinese Holstein cows among the dry period, early lactation, and peak of lactation, and implied that the nucleobindin 2 (NUCB2) gene might be associated with milk production traits due to its expression being significantly increased in early lactation or peak of lactation as compared to dry period (q value < 0.05). Hence, in this study, we detected the single nucleotide polymorphisms (SNPs) of NUCB2 and analyzed their genetic associations with milk yield, fat yield, fat percentage, protein yield, and protein percentage. We re-sequenced the entire coding and 2000 bp of 5′ and 3′ flanking regions of NUCB2 by pooled sequencing, and identified ten SNPs, including one in 5′ flanking region, two in 3′ untranslated region (UTR), and seven in 3′ flanking region. The single-SNP association analysis results showed that the ten SNPs were significantly associated with milk yield, fat yield, fat percentage, protein yield, or protein percentage in the first or second lactation (p values <= 1 × 10−4 and 0.05). In addition, we estimated the linkage disequilibrium (LD) of the ten SNPs by Haploview 4.2, and found that the SNPs were highly linked in one haplotype block (D′ = 0.98–1.00), and the block was also significantly associated with at least one milk traits in the two lactations (p values: 0.0002–0.047). Further, we predicted the changes of transcription factor binding sites (TFBSs) that are caused by the SNPs in the 5′ flanking region of NUCB2, and considered that g.35735477C>T might affect the expression of NUCB2 by changing the TFBSs for ETS transcription factor 3 (ELF3), caudal type homeobox 2 (CDX2), mammalian C-type LTR TATA box (VTATA), nuclear factor of activated T-cells (NFAT), and v-ets erythroblastosis virus E26 oncogene homolog (ERG) (matrix similarity threshold, MST > 0.85). However, the further study should be performed to verify the regulatory mechanisms of NUCB2 and its polymorphisms on milk traits. Our findings first revealed the genetic effects of NUCB2 on the milk traits in dairy cows, and suggested that the significant SNPs could be used in genomic selection to improve the accuracy of selection for dairy cattle breeding.


2011 ◽  
Vol 78 (2) ◽  
pp. 242-249 ◽  
Author(s):  
Yanghua He ◽  
Qin Chu ◽  
Peipei Ma ◽  
Yachun Wang ◽  
Qin Zhang ◽  
...  

CD4+T cells play a key role in the immune response of pathogen-induced mastitis in dairy cattle. Mammary gland factor STAT5b is involved in the regulation of CD4+T cell differentiation during inflammatory response and milk production. Little is known about the genetic variation effects of bovineCD4andSTAT5bgenes on somatic cell score (SCS) and milk production traits in dairy cattle. The aim of the study was to investigate the single nucleotide polymorphisms (SNPs) of bovineCD4andSTAT5bin Chinese Holsteins and to analyse their association with estimated breeding values (EBVs) for SCS and milk production traits. In the present study, SNPs ofCD4(NC_007303 g.13598C>T) andSTAT5b(NC_007317 g.31562 T>C) were identified and genotyped in Chinese Holstein population. The results showed that both SNPs were significantly associated with the EBVs for milk yield and protein yield in Chinese Holstein cows, and the SNP inCD4was associated with the EBV for SCS (P<0·01). The additive effect ofCD4SNP on protein yield was significant (P<0·05), and the dominant effect ofSTAT5bSNP was significant on milk yield and protein yield (P<0·01). Cows with combination genotype C7 (CCTT:CD4g.13598C>T andSTAT5bg.31562 T>C) had the highest SCS EBV but lower milk yield, while cows with C2 (TTTC) produced more milk, fat and protein than the other eight combination genotypes. These results suggested that the SNPs inCD4andSTAT5bmay be potential genetic markers for SCS and milk/protein yields selecting and warrant further functional research.


2008 ◽  
Vol 53 (No. 6) ◽  
pp. 238-246 ◽  
Author(s):  
E. Hradecká ◽  
J. Čítek ◽  
L. Panicke ◽  
V. Řehout ◽  
L. Hanusová

: We analysed the relations of estimated breeding values (EBV) of 315 German Holstein sires to their genotypes in growth hormone gene (<i>GH1</i>), growth hormone receptor gene (<i>GHR</i>) and acylCoA-diacylglycerol acyltransferase 1 (<i>DGAT1</i>). The strong relation of <i>DGAT1 K232A</i> to the estimated breeding values for milk production traits has been confirmed, when allele <i>DGAT1<sup>K</sup></i> was connected with higher milk fat yield, milk fat and milk protein content, while allele <i>DGAT1<sup>A</sup></i> increased milk yield and milk protein yield. The effect of <i>DGAT1</i> genotype explained from 4.70% of variability of EBVs for fat yield to 31.90% of variability of EBVs for fat content. The evaluation of <i>GH1</i> 127 Leu/Val and <i>GHR</i> 257 SNP polymorphisms did not reveal an association of their polymorphism with EBVs for milk production traits, except the EBVs of <i>GHR<sup>G</sup>/GHR<sup>G</sup></i> homozygotes for fat yield, which were significantly lower. The effect of <i>GH1</i> or <i>GHR genotype explained only a negligible portion of variability of EBVs (<i>R</i><sup>2</sup> < 1.00% in most cases).


Sign in / Sign up

Export Citation Format

Share Document