scholarly journals The relation of GH1, GHR and DGAT1 polymorphisms with estimated breeding values for milk production traits of German Holstein sires

2008 ◽  
Vol 53 (No. 6) ◽  
pp. 238-246 ◽  
Author(s):  
E. Hradecká ◽  
J. Čítek ◽  
L. Panicke ◽  
V. Řehout ◽  
L. Hanusová

: We analysed the relations of estimated breeding values (EBV) of 315 German Holstein sires to their genotypes in growth hormone gene (<i>GH1</i>), growth hormone receptor gene (<i>GHR</i>) and acylCoA-diacylglycerol acyltransferase 1 (<i>DGAT1</i>). The strong relation of <i>DGAT1 K232A</i> to the estimated breeding values for milk production traits has been confirmed, when allele <i>DGAT1<sup>K</sup></i> was connected with higher milk fat yield, milk fat and milk protein content, while allele <i>DGAT1<sup>A</sup></i> increased milk yield and milk protein yield. The effect of <i>DGAT1</i> genotype explained from 4.70% of variability of EBVs for fat yield to 31.90% of variability of EBVs for fat content. The evaluation of <i>GH1</i> 127 Leu/Val and <i>GHR</i> 257 SNP polymorphisms did not reveal an association of their polymorphism with EBVs for milk production traits, except the EBVs of <i>GHR<sup>G</sup>/GHR<sup>G</sup></i> homozygotes for fat yield, which were significantly lower. The effect of <i>GH1</i> or <i>GHR genotype explained only a negligible portion of variability of EBVs (<i>R</i><sup>2</sup> < 1.00% in most cases).

1996 ◽  
Vol 63 (2) ◽  
pp. 175-181 ◽  
Author(s):  
M. Falaki ◽  
M. Sneyers ◽  
A. Prandi ◽  
S. Massart ◽  
C. Corradini ◽  
...  

AbstractThe positive effect of administration of growth hormone (GH) on milk production and its presence in selected dairy cattle lines of higher GH concentrations prompted an examination of the presence of restriction fragment length polymorphism (RFLP) in the growth hormone gene using the enzyme Taq/ and to investigate associations between this polymorphism and milk production traits. Blood was sampled from 251 Italian Holstein-Friesian cows. Three fragment bands, arbitrarily denoted A, B and E, of 6·2, 5·2 and 1·9 kilobase (kb), respectively, were observed. Their combinations exhibited six patterns, AA, AB, ABE, AE, BB and BE with frequencies of 64·5, 24·3, 2·4, 6·8, 1·4 and 0·4%, respectively. The statistical analysis was performed using linear mixed animal models. The results indicated an effect of the GHgene polymorphic Taq/restriction fragment on 305-day productions of milk, fat and protein; the low frequency pattern AE showed productions inferior to those for AA or AB patterns. Effect estimates of AA, AB and AE were, respectively, 200 (s.e. 215), 218 (s.e. 267) and -910 (s.e. 380) kg for milk production, 7·75 (s.e. 7·98), 16·10 (s.e. 9·79) and -22·14 (s.e. 14·42) kg for fat production, and 6·78 (s.e. 6·21), 8·57 (s.e. 7·58) and -20·74 (s.e. 11·14) kg for protein production. The average substitution effect estimates of E were -891 (s.e. 278), -26·56 (s.e. 10·16) and -24·50 (s.e. 9·43) kg for milk, fat and protein yields, respectively. In conclusion, these results suggest that the E fragment deserves further designed and specific study.


2002 ◽  
Vol 45 (5) ◽  
pp. 421-428 ◽  
Author(s):  
A. Dybus

Abstract. Associations between polymorphism of the bovine growth hormone (GH) gene (Leu/Val) and milk production traits of Black-and-White cattle with different proportional share of Holstein Friesian genes were analysed. A total of 1086 cows were included in the study. PCR-RFLP method was used for genotyping. The frequencies of genotypes and alleles were as follows: 0.653 for LL genotype, 0.324 for LV and 0.023 for VV, and 0.815 for GHL and 0.185 for GHV. Associations between Leu/Val polymorphism and milk production traits of cows were found only in first lactation. Cows with LL genotype had higher milk, fat and protein yield compared to LV individuals (P ≤ 0.01).


2012 ◽  
Vol 57 (No. 2) ◽  
pp. 45-53 ◽  
Author(s):  
J. Boleckova ◽  
J. Matejickova ◽  
M. Stipkova ◽  
J. Kyselova ◽  
L. Barton

The aim of this study was to estimate allelic and genotypic frequencies of five DNA markers that are positional and functional candidates for milk production traits in Czech Fleckvieh cattle. In addition, we evaluated the association of these markers with milk production traits and breeding values for milk production traits and also estimated linkage disequilibrium (LD) between two markers within the prolactin (PRL) gene. As part of this study, 505 Czech Fleckvieh cows were genotyped. The markers in proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), secreted phosphoprotein (SPP1), cytochrome P450 family 11 subfamily B hydroxylase (CYP11B1), and the two polymorphisms in the prolactin gene (PRL) showed evidence of segregation in our study. The PPARGC1A polymorphism was associated with milk yield, milk fat and protein traits. The polymorphism in SPP1 was significantly associated with milk protein percentage. The CYP11B1 polymorphism showed positive associations with milk composition traits and breeding values for milk yield, milk fat, and protein traits. Both polymorphisms within the PRL gene were associated with milk yield, milk fat and milk protein yield (individually and grouped). Linkage disequilibrium between the two polymorphisms in PRL was not observed. In conclusion, all markers examined in this study are important markers for milk production traits in Czech Fleckvieh cattle, and both markers within the PRL gene should be evaluated in future research. &nbsp;


2000 ◽  
Vol 51 (4) ◽  
pp. 515 ◽  
Author(s):  
M. R. Shariflou ◽  
C. Moran ◽  
F. W. Nicholas

The occurrence of the Leu127/Val127 variants of the bovine growth hormone (bGH) gene and their effect on milk production traits was investigated in Australian Holstein-Friesian cattle. Animals were genotyped for the Leu127/Val127 variants, with RFLP methodology, using PCR and AluI digestion of PCR products (AluI-RFLP). Alleles Leu127 and Val127 occurred with frequencies of 82% and 18%, respectively. The quantitative effect of this polymorphic site on milk-production traits was estimated from lactation data and test-day data. Results from the 2 data sets consistently showed that the Leu127 allele is associated with higher production of milk, fat, and protein and is dominant to Val127. The average effects of the gene substitution are 95 L for milk yield, 7 kg for fat yield, and 3 kg for protein yield per lactation. This locus may be directly responsible for quantitative variation or it may be a marker for a closely linked quantitative trait locus (QTL) for milk-production traits in Australian dairy cattle. In either case, it will be useful as an aid to selection for improvement of milk production traits. As the Leu127 allele is dominant, selection of AI sires homozygous for the Leu127 allele (Leu127/Leu127) will result in maximum benefit without the need for genotyping cows.


2020 ◽  
Vol 26 (1-2) ◽  
pp. 1-7
Author(s):  
MP Mostari ◽  
MYA Khan

The study was carried out on Stearoyl-CoA desaturase (SCD,) diacylglycerolacyltransferase-1 (DGAT1) and ATP-binding cassette G2 (ABCG2) genes which are responsible for variation in milk production traits (milk yield, fat yield, protein yield, and SNF yield) in cattle. These genes were used as candidate genes in Red Chittagong Cattle (RCC) breed of Bangladesh Livestock Research Institute (BLRI) herd for detection of single nucleotide polymorphisms (SNPs) causing variation in milk production traits. Focusing on the effects of SNPs on milk production traits, phenotypic variation within RCC breed was identified and categorized based on milk production traits. Average lactation yield varied from 527 to 1436 kg (n=29) per lactation. About 18% of lactating cows showed an average of >1000 kg per lactation. Average fat percent ranged from 4.71 to 6.25 (n=15). Eighteen (18) set of primers were designed to amplify targeted regions of SCD, DGAT1 and ABCG2 genes, where 8 set from DGAT1, 6 set from SCD and 4 set from ABCG2 gene. Pooled DNA from 50 RCC cows and 5 RCC bulls were used in sequencing. In sequence analysis, the SCD, DGAT1 and ABCG2 alleles found fixed in RCC. This study suggests an evidence that RCC breed has fixed alleles with respect to SCD, DGAT1 and ABCG2 genes reported to be responsible for higher milk fat yield, higher fat and protein percent. Bang. J. Livs. Res. Vol. 26 (1&2), 2019: P. 1-7


2013 ◽  
Vol 80 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Maria Luisa Dettori ◽  
Angela Maria Rocchigiani ◽  
Sebastiano Luridiana ◽  
Maria Consuelo Mura ◽  
Vincenzo Carcangiu ◽  
...  

The aim of this research was to investigate variability in each of the five exons of the caprine growth hormone (gGH) gene, in order to establish the possible relationships with milk traits in Sarda breed goat. The general linear model procedure was used to analyse the effects of the single strand conformation (SSCP) profiles on milk traits of 100 lactating goats. Analysis of conformational polymorphism at exons 1–5 revealed a total of 25 differing banding patterns. Sequencing revealed 21 nucleotide changes (compared with GenBank D00476): 14 were polymorphic and 7 monomorphic; 19 in exonic regions, 5 of which were nonsynonymous. A SNP upstream of the transcription initiation codon (c.-3A>G) and an indel (c.*29_30insC) in the 3′UTR, were detected. Alignment of 4 cloned sequences including the entire gGH gene led to the identification of 22 nucleotide variations within the intron regions, including two indels. Association analysis revealed that each exon, except exon-1, affected milk yield, exons 1 and 3 influenced milk fat percentage, and all exons, except exon-2, had an effect on protein percentage, supporting previous results in livestock. The variability detected at the caprine GH gene might provide useful information for the phylogeny of ruminants and, more importantly, have implications on the biological function of the growth hormone and on those traits resulting from its physiological action, including milk production and composition. The caprine GH gene may become a useful molecular marker for a more effective genetic selection for milk production traits in goats.


Genetika ◽  
2017 ◽  
Vol 49 (3) ◽  
pp. 969-977
Author(s):  
Ahad Yousefi ◽  
Abdolreza Salehi ◽  
Mehdi Aminafshar ◽  
Sayyadnejad Bagher

Uterine Milk Protein (UTMP) the member of Serine Protease Inhibitor superfamily secreted from uterine endometrium during pregnancy under influence of progesterone. Specific functions of UTMP include protease inhibition, growth control, and direct nutrition of the conceptus. This investigation was performed in order to study polymorphism of UTMP gene and its association with milk production traits in Iranian Holstein bulls. Genomic DNA was extracted from 100 semen samples of proven bulls. In order to amplify 568bp-fragment including same part of intron 3, whole exon 4 and downstream of UTMP gene, a pair of primer was designed. PCR products were digested with BsrI enzyme. The allele frequencies of a, b and c were 0.135, 0.69 and 0.175, respectively in studied population. Four genotypes AB, BB, BC and CC were observed with frequencies of 0.27, 0.49, 0.13 and 0.11, respectively. Genotypes AA and AC were not observed in this study. The chi-square (X2) test revealed deviation from Hardy-Weinberg equilibrium. Data were obtained from animal breeding centre of Iran for the first lactation during 1993-2008 to estimate some genetic parameters. Heritability of milk yield, fat yield, protein yield, fat percent and protein percent were 0.28, 0.21, 0.22, 0.32 and 0.34 respectively. Results indicated significant association between UTMP Genotypes and milk, fat and protein yield traits. Meanwhile, Bulls with CC Genotype had higher milk, fat and protein yield compared to other genotypes (p<0.05). These results suggested UTMP as a candidate gene influencing milk production traits might be implemented in breeding programs to improve the production performance of Iranian Holstein cattle.


1998 ◽  
Vol 78 (3) ◽  
pp. 245-248
Author(s):  
S. E. Aggrey ◽  
M. P. Sabour ◽  
C. Y. Lin ◽  
D. Zadworny ◽  
U. Kuhnlein

A total of 185 informative sons from nine heterozygous grandsires were used to study the associations of alleles A and B of the β-LG locus and milk production using the granddaughter design. The average informativeness of the β-LG locus for the nine heterozygous grandsires was 61%. The β-LG locus was found to be significantly associated with milk protein percentage (P ≤ 0.05) across families and (P ≤ 0.01) in one family. The A allele was associated with higher protein percentage EBV (0.096%) than the B allele in that family. There was no association between β-LG and other production traits (milk, fat and protein yields and, fat and percentages). The β-LG locus has a potential use in marker-assisted selection. However, since the association between markers and a given trait is not found in all families, within-family marker selection might be more appropriate due to linkage disequilibrium. Key words: β-lactoglobulin, Canadian Holstein, milk production traits, granddaughter design


Sign in / Sign up

Export Citation Format

Share Document