scholarly journals Improvement of In vitro release of Glibenclamide using Cyclodextrin inclusion complexation

2015 ◽  
Vol 13 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Neelkant Prasad ◽  
Navneet Garud ◽  
Akanksha Garud

The present study aimed to improve the aqueous solubility of the oral hypoglycemic agent, glibenclamide (GLI), so as to improve its oral absorption, and hence bioavailability after oral administration. This was accomplished by complex formation between GLI and ?-cyclodextrin (?-CD). The study involves the preparation of the inclusion complexes using different techniques. Differential Scanning Calorimetry (DSC) and XRay Diffractometry (XRD) results confirmed the complex formation between GLI and ?-CD. The solubility increase of GLI was due to 1:1 complex formation. The dissolution rate of GLI from the complex prepared by neutralization method was more rapid as compared to other methods used. DOI: http://dx.doi.org/10.3329/dujps.v13i1.21855 Dhaka Univ. J. Pharm. Sci. 13(1): 15-21, 2014 (June)

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
R S Thakur ◽  
A Nayaz ◽  
Y Koushik

In the case of solubility limited absorption, creating supersaturation in the GI fluid is very critical as supersaturation may provide great improvement of oral absorption. The techniques to create the so-called supersaturation in the GI fluid include microemulsions, emulsions, liposomes, complexations, polymeric micelles, and conventional micelles. Ciprofloxacin was chosen because it is practically insoluble in water; hence its salt form is used commercially, which is soluble in water. The objective of the present investigation was to enhance the solubility of Ciprofloxacin by formulating it into microemulsion system. For this purpose, initially, surfactant and cosurfactant were selected based on their HLB value, followed by pseudo-ternary phase diagrams to identify the microemulsion existing zone. Different formulations were developed and evaluated for pH, conductivity, in vitro release and stability. Solubility study was performed for optimized formulation. The pH of the designed formulations varied from 6.02-7.04. This was ideal and near blood pH 7.4. Conductivity data indicated that the microemulsion was of the o/w type. In vitro release of optimized formulation(FM3) was 95.2% as compared to pure drug 46.61% after 90 min and marketed product(salt form) 93.9%. Hence, by formulating into microemulsion, the solubility of ciprofloxacin is significantly enhanced.    


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Hassan Shah ◽  
Asadullah Madni ◽  
Muhammad Muzamil Khan ◽  
Fiaz-ud-Din Ahmad ◽  
Nasrullah Jan ◽  
...  

The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08–206.4 ± 2.26 nm, zeta potential was −17.8 ± 1.26 to −24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.


2020 ◽  
Vol 88 (4) ◽  
pp. 52
Author(s):  
Mona Qushawy ◽  
Ali Nasr ◽  
Shady Swidan ◽  
Yasmin Mortagi

Glimepiride is an antidiabetic drug which is one of the third generation sulfonylureas. It belongs to class II, according to the BCS (Biopharmaceutical Classification System), which is characterized by low solubility and high permeability. The aim of this work was to formulate glimepiride as solid dispersion using water-soluble carriers to enhance its aqueous solubility and thus enhance its bioavailability. Nine formulations of glimepiride solid dispersion were prepared by a solvent evaporation technique using three different carriers (mannitol, polyethylene glycol 6000, and β-cyclodextrin) with three different drug carrier ratio (1:1, 1:3, and 1:6). Formulation variables were optimized using 32 full factorial design. The prepared formulations were evaluated for production yield, drug content, micromeritic properties, thermal analysis, in-vitro release, and in-vivo hypoglycemic effect. All prepared formulations showed high production yield ranged from 98.4 ± 2.8 to 99.8 ± 2.2% and high drug content in the range of 97.2 ± 3.2 to 99.6 ± 2.1%. The micromeritic properties revealed that all prepared glimepiride formulations showed good flowability. The differential scanning calorimetry study revealed the presence of the drug in the more soluble amorphous form. In accordance with the results of in vitro release study, it was found that the solubility of glimepiride was increased by increasing the drug carrier ratio, compared with the pure form of the drug. It was found that F9 showed a high and rapid reduction in blood glucose levels in diabetic rats, which indicated the success of a solid dispersion technique in improving the solubility and hence the bioavailability of glimepiride.


Author(s):  
AHMED GARDOUH ◽  
Samar H. Faheim ◽  
Samar M. Solyman

Objective: The main purpose of this work was to prepare tolnaftate (TOL) loaded nanostructured lipid carriers (NLCs), Evaluate its characteristics and in vitro release study. Methods: Tolnaftate loaded Nanostructured lipid carriers were prepared by the high shear homogenization method using different liquid lipids types (DERMAROL DCO® and DERMAROL CCT®) and concentrations, different concentration ratios of tween80® to span20® and different homogenization speeds. All the formulated nanoparticles were subjected to particle size (PS), zeta potential (ZP), polydispersity index (PI), drug entrapment efficiency (EE), Differential Scanning Calorimetry (DSC), Transmission Electron microscopy (TEM), release kinetics and in vitro release study was determined. Results: The results revealed that NLC dispersions had spherical shapes with an average size between 154.966±1.85 nm and 1078.4±103.02 nm. High entrapment efficiency was obtained with negatively charged zeta potential with PDI value ranging from 0.291±0.02 to 0.985±0.02. The release profiles of all formulations were characterized by a sustained release behavior over 24 h and the release rates increased as the amount of surfactant decreased. The release rate of TOL is expressed following the theoretical model by Higuchi. Conclusion: From this study, It can be concluded that NLCs are a good carrier for tolnaftate delivery


2010 ◽  
Vol 10 (3) ◽  
pp. 234-238 ◽  
Author(s):  
Alija Uzunović ◽  
Edina Vranić ◽  
Šeherzada Hadžidedić

Carbamazepine belongs to the class II biopharmaceutical classification system (BCS) which is characterized by a high per-oral dose, a low aqueous solubility and a high membrane permeability. The bioavailability of such a drug is limited by the dissolution rate. The present study deals with the formulations of immediate release tablets of poorly soluble carbamazepine. As model tablets for this investigation, two formulations (named “A” and “B” formulations) of carbamazepine tablets labeled to contain 200 mg were evaluated. The aim of this study was to establish possible differences in dissolution profile of these two formulations purchased from the local market.The increased crystallinity together with enlarged particle size, enhanced aggregation and decreased wettability of the drug, resulted in insufficient dissolution rate for formulation “B’.’ From the dissolution point of view, this formulation was inferior to the formulation “A, due to the solubilization effect.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 917 ◽  
Author(s):  
Taieb Aouak ◽  
Wassem Sharaf Saeed ◽  
Nawaf M. Al-Hafi ◽  
Abdel-Basit Al-Odayni ◽  
Abdulaziz Ali Alghamdi ◽  
...  

2-hydroxyethyl methacrylate, methylmethacrylate, ethylene glycol dimethyl methacrylate, and lignocaine (drug) were mixed together and the monomers were copolymerized at 60 °C through a free radical polymerization in the presence of α,α′-Azoisobutyronitrile in tetrahydrofuran. A series of copolymer/drug composites with different monoacrylate monomer compositions were prepared by solvent evaporation and characterized by different methods such as nuclear magnetic resonance, differential scanning calorimetry, Fourier transform infrared, X-ray diffraction, and mechanical and optical testing. The water content in the copolymers and the cell viability test on the samples were also examined in this investigation. The results of the analyses of the properties of this drug-carrier system are promising, indicating that this material may be a potential candidate for contact lens applications. The release dynamic of this medication from the prepared drug-carrier systems was investigated in neutral pH media. The results obtained revealed that the diffusion of lignocaine through the copolymer matrix obeys the Fick model and the dynamic release can be easily controlled by the methyl methacrylate content in the copolymer.


2021 ◽  
Vol 36 (2) ◽  
pp. 237-245
Author(s):  
Xin Wang ◽  
Chenchen Gou ◽  
Chunyuan Gao ◽  
Yazhen Song ◽  
Jinming Zhang ◽  
...  

Casein-based hydrogels were reported as biodegradability, biocompatibility, and non-toxic materials that had potential in drug delivery. At present, we prepared two kinds of casein/γ-PGA hybrid hydrogels, 1/5 and 1/9, based on the ratio of γ-PGA to casein. The hydrogels were crosslinked by microbial transglutaminase (MTG), the physicochemical properties of the casein/γ-PGA hydrogels were investigated by scanning electron microscopy (SEM) observation, differential scanning calorimetry (DSC) analysis, texture analysis, swelling ratio test, and stability test. The hydrogels showed a well-interconnected sparse and porous structure. The 1/5 casein/γ-PGA hydrogel was much stable, hard, and cohesive than the 1/9 casein/γ-PGA hydrogel, and the 1/5 casein/γ-PGA hydrogel showed a higher swelling ratio and lower degradation rate. To investigate in vitro release behavior, we chose the hydrophilic vitamin B12 and hydrophobic aspirin as the model drugs incorporated into the casein/γ-PGA hydrogels. The 1/5 casein/γ-PGA hydrogel exhibited a good drug release behavior.


Sign in / Sign up

Export Citation Format

Share Document