scholarly journals Isolation of pathogenic bacteria from the skin ulcerous symptomatic gourami (Colisa lalia) through 16S rDNA analysis

1970 ◽  
Vol 27 ◽  
pp. 21-24 ◽  
Author(s):  
Mosharrof Hossain

Aeromonas spp infections are probably the most common bacterial disease diagnosed in cultured warm water fish. In the present study, six strains of Aeromonas spp bacteria were isolated from the gourami (Colisa lalia) by 16S rDNA sequencing analyses that are pathogenic to freshwater fish. Among them, three were under Aeromonas veronii species, two were Aeromonas sp ATCC and one was Aeromonas hydrophila. Colisa lalia usually imported in Korea from the South and South-east Asian countries for recreational purposes. However, they are playing important role as a disease vector or carriers. The infected fish of this study frequently have hemorrhages at the base of the fins or on the skin, and gross ulcerative lesions. Internal signs include, fluid in the abdomen, swollen liver and spleen, and the intestine was distended and fluid-filled. In this study, the utility of 16S rDNA sequencing was employed to isolate Aeromonas bacteria from freshwater imported fish are important to environment, veterinary, and clinical purposes. Key word: Bacteria, Colisa lalia, 16S rDNA, Aeromonas   doi:10.3329/ujzru.v27i0.1948 Univ. j. zool. Rajshahi Univ. Vol. 27, 2008 pp. 21-24

2016 ◽  
Vol 30 (6) ◽  
pp. 1056-1060 ◽  
Author(s):  
Shih Keng Loong ◽  
Chee Sieng Khor ◽  
Faizatul Lela Jafar ◽  
Sazaly AbuBakar

2021 ◽  
Vol 11 (03) ◽  
pp. 157-164
Author(s):  
Jun Zheng ◽  
Juan Zhu ◽  
Bin Chen ◽  
Lingxiu Chen ◽  
Tian Gao ◽  
...  

Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 922-922 ◽  
Author(s):  
P. R. Giordano ◽  
J. M. Vargas ◽  
A. R. Detweiler ◽  
N. M. Dykema ◽  
L. Yan

In June of 2009, a golf course putting green sample of creeping bentgrass (Agrostis stolonifera L.) cv. Penn G-2 from a golf club in North Carolina was submitted to the Michigan State University Turfgrass Disease Diagnostic Laboratory for diagnosis. The sample exhibited symptoms of general wilt, decline, and characteristic necrosis from the leaf tips down. Fungal pathogens were ruled out when no phytopathogenic fungal structures were observed with microscopic examination of infected tissue. Symptoms appeared similar to those of annual bluegrass affected by bacterial wilt caused by Xanthomonas translucens pv. poae. Bacterial streaming was present in all of the cut infected tissue of the Penn G-2 bentgrass sample when observed with a microscope. To isolate the causal agent, cut leaf tissue (1- to 3-mm tips) exhibiting bacterial streaming was surface disinfected for 1 min in 10% sodium hypochlorite solution and rinsed for 1 min with sterile distilled water. Leaf blades were placed into Eppendorf microtubes with 20 μl of sterile phosphate-buffered saline (PBS) solution (pH 7) and macerated with a sterile scalpel. Serial dilutions up to 1 × 10–4 were performed in sterile PBS; 10 μl of each suspension was plated onto nutrient agar (NA) (Becton Dickinson, Sparks, MD) and incubated at room temperature for 5 days. Pure cultures of three commonly observed single bacterial colonies growing on plates from serial dilutions were made on NA medium. These pure cultures were grown for 5 days and used to inoculate three replicates of 5-week-old Penn G-2 plants that had uniformly filled in 8.5-cm-diameter pots grown under greenhouse conditions. Uninfected Penn G-2 creeping bentgrass plants were inoculated with 1 ml of 1.3 × 109 CFU/ml of bacterial suspension by adding drops of the suspension to blades of sterile scissors used to cut the healthy plants. Of the three different bacterial cultures selected to inoculate healthy plants, only one resulted in slight browning of leaf tips just 2 days after inoculation. The symptoms progressed, and by 5 days after inoculation, browning, twisting and leaf dieback to the sheath were observed. When leaf tips of the inoculated plants were cut, bacterial streaming was observed. Isolation of the bacterium from inoculated Penn G-2 plants was performed to fulfill Koch's postulates. Once isolated, a single bacterial colony was identified by 16S rDNA sequencing (Microcheck Inc. Northfield, VT). 16S rDNA sequencing results indicated that the causal agent of bacterial infection was a member of the Acidovorax genus, with a 100% sequence match to Acidovorax avenae subsp. avenae (2). The same nonflorescent, aerobic, gram-negative bacterium has been consistently isolated from inoculated plants exhibiting symptoms thus far. A member of the Acidovorax genus has also been identified as a pathogen of creeping bentgrass in Japan (1). To our knowledge, this is the first report of a bacterial disease affecting creeping bentgrass caused by Acidovorax spp. in the United States. References: (1) N. Furuya et al. J. Fac. Agric. Kyushu Univ. 54:13. 2009. (2) N. Schaad et al. Syst. Appl. Microbiol. 31:434. 2008.


2021 ◽  
Vol 11 (02) ◽  
pp. 109-116
Author(s):  
Juncheng Zheng ◽  
Juan Zhu ◽  
Bin Chen ◽  
Lingxiu Chen ◽  
Tian Gao ◽  
...  

Author(s):  
Zhichao Ren ◽  
Qing Liu ◽  
Wenfeng Li ◽  
Xian Wu ◽  
Yanling Dong ◽  
...  

The ocular surface possesses its own bacterial microbiota. Once given a chance, opportunistic pathogens within ocular microbiota may lead to corneal infection like bacterial keratitis (BK). To reveal the possible factor that makes people vulnerable to BK from the perspective of ocular bacterial microbiota, as well as to compare diagnostic information provided by high-throughput 16S rDNA sequencing and bacterial culture, 20 patients with BK and 42 healthy volunteers were included. Conjunctival swabs and corneal scrapings collected from the diseased eyes of BK patients were subjected for both high-throughput 16S rDNA sequencing and bacterial culture. Conjunctival swabs collected from the normal eyes of BK patients and healthy volunteers were sent only for sequencing. For identifying the pathogens causing BK, high-throughput 16S rDNA sequencing presented a higher positive rate than bacterial culture (98.04% vs. 17.50%), with 92.11% reaching the genus level (including 10.53% down to the species level). However, none of the sequencing results was consistent with the cultural results. The sequencing technique appears to challenge culture, and could be a complement for pathogen identification. Moreover, compared to the eyes of healthy subjects, the ocular microbiota of three sample groups from BK patients contained significantly less Actinobacteria and Corynebacteria (determinate beneficial symbiotic bacteria), but significantly more Gammaproteobacteria, Pseudomonas, Bacteroides, and Escherichia-Shigella (common ocular pathogenic bacteria). Therefore, it is speculated that the imbalance of protective and aggressive bacteria in the ocular microbiota of healthy people may trigger susceptibility to BK. Based on this speculation, it seems promising to prevent and treat infectious oculopathy through regulating ocular microbiota.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nidhi Srivastava ◽  
Indira P. Sarethy

Aims: Characterization of antimicrobial metabolites of novel Streptomyces sp. UK-238. Background: Novel antimicrobial drug discovery is urgently needed due to emerging multi antimicrobial drug resistance among pathogens. Since many years, natural products have provided the basic skeletons for many therapeutic compounds including antibiotics. Bioprospection of un/under explored habitats and focussing on selective isolation of actinobacteria as major reservoir of bio and chemodiversity has yielded good results. Objective: The main objectives of the study were the identification of UK-238 by 16S rDNA sequencing and antimicrobial metabolite fingerprinting of culture extracts. Method: In the present study, a promising isolate, UK-238, has been screened for antimicrobial activity and metabolite fingerprinting from the Himalayan Thano Reserve forest. It was identified by 16S rDNA sequencing. Ethyl acetate extract was partially purified by column chromatography. The pooled active fractions were fingerprinted by GC-MS and compounds were tentatively identified by collated data analysis based on Similarity Index, observed Retention Index from Databases and calculated Retention Index. Results: UK-238 was identified as Streptomyces sp. with 98.4% similarity to S. niveiscabiei. It exhibited broad-spectrum antibacterial and antifungal activity. GC-MS analysis of active fractions of ethyl acetate extract showed the presence of eighteen novel antimicrobial compounds belonging to four major categories- alcohols, alkaloid, esters and peptide. Conclusion: The study confirms that bioprospection of underexplored habitats can elaborate novel bio and chemodiversity.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Weston J. Jackson ◽  
Ipsita Agarwal ◽  
Itsik Pe’er

Motivation. Microbiome sequencing allows defining clusters of samples with shared composition. However, this paradigm poorly accounts for samples whose composition is a mixture of cluster-characterizing ones and which therefore lie in between them in the cluster space. This paper addresses unsupervised learning of 2-way clusters. It defines a mixture model that allows 2-way cluster assignment and describes a variant of generalized k-means for learning such a model. We demonstrate applicability to microbial 16S rDNA sequencing data from the Human Vaginal Microbiome Project.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Luying Shan ◽  
Yinjiao Li ◽  
Shi Zheng ◽  
Yuanmiao Wei ◽  
Ying Shang

Sign in / Sign up

Export Citation Format

Share Document