Effect of Cooling Rate and Austenitic Grain Size on the Austenite Decomposition Kinetics in a Low-Carbon Steel

2021 ◽  
Author(s):  
C. Barajas-Miguel ◽  
◽  
O. Vazquez-Gomez ◽  
A. Oliver-Reynoso ◽  
E. Lopez-Martinez ◽  
...  
Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Farnoosh Forouzan ◽  
M. Guitar ◽  
Esa Vuorinen ◽  
Frank Mücklich

To improve the weld zone properties of Advanced High Strength Steel (AHSS), quenching and partitioning (Q&P) has been used immediately after laser welding of a low-carbon steel. However, the mechanical properties can be affected for several reasons: (i) The carbon content and amount of retained austenite, bainite, and fresh martensite; (ii) Precipitate size and distribution; (iii) Grain size. In this work, carbon movements during the partitioning stage and prediction of Ti (C, N), and MoC precipitation at different partitioning temperatures have been simulated by using Thermocalc, Dictra, and TC-PRISMA. Verification and comparison of the experimental results were performed by optical microscopy, X-ray diffraction (XRD), Scanning Electron Microscop (SEM), and Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Scanning Diffraction (EBSD) analysis were used to investigate the effect of martensitic/bainitic packet size. Results show that the increase in the number density of small precipitates in the sample partitioned at 640 °C compensates for the increase in crystallographic packets size. The strength and ductility values are kept at a high level, but the impact toughness will decrease considerably.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1601
Author(s):  
Junhua Hou ◽  
Binbin He

The effect of the initial starting microstructures on the austenite reverse transformation kinetics is thoroughly studied in low-carbon steel. The different initial starting microstructures including the ferrite + pearlite, bainite, and martensite are obtained through varied forward transformation. It is found that the bainite phase demonstrates highest reverse transformation rate while the ferrite + pearlite shows the lowest transformation rate. The above observation can be explained through the different grain size of the initial starting microstructures as the grain boundaries could act as the nucleation sites for austenite reverse transformation. The explanation is further substantiated based on the consideration of the reverse transformation kinetics from the martensite microstructure with different grain size.


Sign in / Sign up

Export Citation Format

Share Document