Turning Towers for Strip to Couple Strip Finishing Processes in Restricted Available Space

2021 ◽  
Author(s):  
Michel Dubois ◽  
B. Van Houtte ◽  
Keyword(s):  

1946 ◽  
Vol 25 (7) ◽  
pp. 211
Author(s):  
Blore ◽  
Everest ◽  
Jefferies ◽  
Hall ◽  
Brown ◽  
...  


2021 ◽  
Vol 13 (3) ◽  
pp. 1268
Author(s):  
Miriam Ribul ◽  
Kate Goldsworthy ◽  
Carole Collet

In the context of the circular economy, materials in scientific development present opportunities for material design processes that begin at a raw state, before being introduced into established processes and applications. The common separation of the scientific development of materials from design intervention results in a lack of methodological approaches enabling designers to inform new processes that respond to new material properties. This paper presents the results of a PhD investigation that led to the development and application of a Material-Driven Textile Design (MDTD) methodology for design research based in the materials science laboratory. It also presents the development of the fabrication of a textile composite with regenerated cellulose obtained from waste textiles, resulting from the MDTD methodology informing novel textile processes. The methods and practice which make up this methodology include distinct phases of exploration, translation and activation, and were developed via three design-led research residencies in materials science laboratories in Europe. The MDTD methodology proposes an approach to design research in a scientific setting that is decoupled from a specific product or application in order to lift disciplinary boundaries for the development of circular material-driven fabrication and finishing processes at the intersection of materials science and design.



Author(s):  
Yahya Choopani ◽  
Mohsen Khajehzadeh ◽  
Mohammad Reza Razfar

Total hip arthroplasty (THA) is one of the most well-known orthopedic surgeries in the world which involves the substitution of the natural hip joint by prostheses. In this process, the surface roughness of the femoral head plays a pivotal role in the performance of hip joint implants. In this regard, the nano-finishing of the femoral head of the hip joint implants to achieve a uniform surface roughness with the lowest standard deviation is a major challenge in the conventional and advanced finishing processes. In the present study, the inverse replica fixture technique was used for automatic finishing in the abrasive flow finishing (AFF) process. For this aim, an experimental setup of the AFF process was designed and fabricated. After the tests, experimental data were modeled and optimized to achieve the minimum surface roughness in the ASTM F138 (SS 316L) femoral head of the hip joint through the use of response surface methodology (RSM). The results confirmed uniform surface roughness up to the range of 0.0203 µm with a minimum standard deviation of 0.00224 for the femoral head. Moreover, the spherical shape deviation of the femoral head was achieved in the range of 7 µm. The RSM results showed a 99.71% improvement in the femoral head surface roughness (0.0007) µm under the optimized condition involving the extrusion pressure of 9.10 MPa, the number of finishing cycles of 95, and SiC abrasive mesh number of 1000.



2002 ◽  
Vol 8 (S02) ◽  
pp. 806-807
Author(s):  
W. R. Goynes ◽  
D. V. Parikh ◽  
V. Edwards ◽  
T. Vigo


2008 ◽  
Vol 53-54 ◽  
pp. 3-8
Author(s):  
Pai Shan Pa

This study using ultrasonic energy transmitted into the electrolyte to assist in discharging of electrolytic product out of the machining gap in the compound finishing processes of electrochemical finishing and burnishing on hole-wall surface beyond traditional process of holes machining instead of conventional hand or machine polishing. The design finish-tool includes a burnishing-tool and an electrode as a hole-wall surface finish improvement that goes beyond traditional rough boring. In the experiment, the finish-tool travels across the hole-wall surface with continuous or pulsed direct current. The experimental results show that the large supply of current rating is effectively to reach the amount of the material removal and is advantageous to the finishing processes. The average effect of the ultrasonic is more better than the pulsed current while the machining time needs not to be prolonged by the off-time. The finish effect is better with a high rotational speed of the finish-tool because the dregs discharge of electrochemical finishing becomes easier and is also advantageous to the finish. The compound processes of burnishing and ultrasonic electrochemical finishing just require a short time to make the hole-wall surface smooth and bright.



Author(s):  
Khorssand Haghpassand

Abstract The five-axis constrained and optimal orientation planning is formulated as a design optimization problem that incorporates the process machine’s kinematic constraints with the workpiece and tool geometry, to obtain a constrained setup orientation which exploits the maximum capabilities of existing machines. This work will introduce this problem, and will obtain the setup orientation for two different types of rotation structures, i.e., tool rotation and table rotation in O(N) time. Further, the obtained constrained setup orientation, will be augmented to incorporate the workpiece surface magnitude, along with different machine rotation structures, to obtain an optimal setup orientation for different machine rotation structures. The drilling process is also introduced and formulated as additional constraints to the optimization problem. The primary application of the introduced algorithms, is the machining process, where, they can efficiently reduce the number of tool motions and surface finishing processes. However, the solution is very suitable for many manufacturing applications, such as inspection, assembly, robotics, painting, welding, aerospace, electronic surface mount technology, and etc.



1988 ◽  
Vol 25 (6) ◽  
pp. 365-371
Author(s):  
G. Flick ◽  
E. Schollmeyer


2021 ◽  
pp. 1-27
Author(s):  
Junichi Hongu ◽  
Ryohei Horita ◽  
Takao Koide

Abstract This study proposes a modification of the Matsumoto equation using a directional parameter of tooth surfaces to adapt various gear finishing processes. The directional parameters of a contact surface, which affect oil film formations, have been discussed in the field of tribology; but this effect has been undetermined on the meshing gear tooth surfaces having directional machining marks. Thus, this paper investigates the relationship between the gear frictional coefficients and the directional parameters (based on ISO25178) of their tooth surfaces with the various finishing processes; and modifies the Matsumoto equation by introducing a new directional parameter to augment the various gear finishing processes. Our findings indicate that through optimizing the coefficient of the correction term the include the new directional parameter, the calculated friction values using the modified Matsumoto equation correlate more highly to the experimental friction values than that using the unmodified Matsumoto equation.



2015 ◽  
Vol 105 (06) ◽  
pp. 377-383
Author(s):  
F. Klocke ◽  
R. Brocker ◽  
F. Vits ◽  
P. Mattfeld

Beim Vibrationsgleitschleifen wird der Werkstoffabtrag maßgeblich durch die vorherrschenden Kontaktkräfte zwischen dem Werkstück und den Schleifkörpern bestimmt. Dieser Fachartikel stellt ein Messsystem vor, mit dem die messtechnische Erfassung der Kontaktkräfte beim ungeführten Vibrationsgleitschleifen möglich ist. Ein Alleinstellungsmerkmal ist dabei die vollständig kabellose Ausführung des Messsystems. Somit wurden die Messergebnisse nicht durch Kabel beeinflusst, die üblicherweise für die Energieversorgung und Datenübertragung notwendig sind. Mithilfe dieses Messsystems wurde der Einfluss folgender Prozesseingangsgrößen systematisch untersucht: Schleifkörpergröße, Unwuchtmotordrehzahl, Versatzwinkel der Unwuchtgewichte sowie die Masse des unteren und oberen Unwuchtgewichts auf die Kontaktkräfte.   In vibratory finishing the material removal is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is able to measure contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction so that the measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight on the contact forces was investigated.



Sign in / Sign up

Export Citation Format

Share Document