scholarly journals Message Insertion Using the Convolutional Neural Network Model Approach

SinkrOn ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 215
Author(s):  
Lita Ambarwati ◽  
Agrifa Darwanto Sirait ◽  
Bella Siska Tambun ◽  
Eko Paskah Jeremia Purwanto ◽  
Amir Mahmud Husein

One problem in computer vision that has long been sought for a solution is the classification of objects in the image in general. How to duplicate the ability of humans to understand image information, so that computers can recognize objects in the image as humans do. The feature engineering process used is generally very limited where it can only apply to certain datasets without the ability to generalize to any type of image. That is because various differences between images include differences in perspective, differences in scale, differences in lighting conditions, deformation of objects, and so on. Academics who have long struggled with this issue. The application of the Convolutional Neural Network (CNN) method for the insertion of messages in an image with the aim of securing the proposed message produces good security, from the test results, it can be concluded as follows The Convolutional Neural Network (CNN) method requires computing time to insert messages in a secret image. The model framework uses 2 (two) images with the aim of the cover image as input and the secret image where the secret image has been inserted a message so that the secret is not visible. The cover image that has been inserted a secret picture that contains the message looks not much different, but the file size of the secret picture has increased by 66%.

2020 ◽  
pp. 31-41
Author(s):  
admin admin ◽  
◽  
◽  
Monika Gupta

Facial expressions are the translation of the emotions such as anger, sadness, happiness, disgust felt by a person. Facial expression recognition, classification of expressions which has application in various industries such as hospitality, medical to name a few. There are various datasets available for facial expression recognition, we used FER 2013 dataset to build a classification algorithm. This algorithm classifies the emotions into seven categories namely, angry, disgust, happy, sad, fear, surprise and neutral. In traditional convolutional neural network algorithm the computing time is very large, ensemble learning significantly reduced the computing time and offered a promising accuracy. Features of images were extracted using the convolutional neural network, further these features were implemented using XGBoost and Random Forest to build classification algorithms and an accuracy of 77% and 74% was obtained. This was comparable to the accuracy obtained by traditional convolutional neural network which was 75% also with very less computing time.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document