scholarly journals Applying Artificial Intelligence Techniques to Improve Clinical Diagnosis of Alzheimer’s Disease

2020 ◽  
Vol 3 (2) ◽  
pp. 58-79
Author(s):  
Ahmed Abdullah Farid ◽  
Gamal Ibrahim Selim ◽  
Hatem Awad A. Khater

Alzheimer's disease (AD) is a significant regular type of dementia that causes damage in brain cells. Early detection of AD acting as an essential role in global health care due to misdiagnosis and sharing many clinical sets with other types of dementia, and costly monitoring the progression of the disease over time by magnetic reasoning imaging (MRI) with consideration of human error in manual reading. Our proposed model in the first stage, apply the medical dataset to a composite hybrid feature selection (CHFS) to extract new features for select the best features to improve the performance of the classification process due to eliminating obscures. In the second stage, we applied a dataset to a stacked hybrid classification system to combine Jrip and random forest classifiers with six model evaluations as meta-classifier individually to improve the prediction of clinical diagnosis. All experiments conducted on a laptop with an Intel Core i7- 8750H CPU at 2.2 GHz and 16 G of ram running on windows 10 (64 bits). The dataset evaluated using an explorer set of WEKA data mining software for the analysis purpose. The experimental show that the proposed model of (CHFS) feature extraction performs better than proncipal component analysis (PCA), and lead to effectively reduced the false-negative rate with a relatively high overall accuracy with support vector machine (SVM) as meta-classifier of 96.50% compared to 68.83% which is considerably better than the previous state-of-the-art result. The receiver operating characteristic (ROC) curve was equal to 95.5%. Also, the experiment on MRI images Kaggle dataset of CNN classification process with 80.21% accuracy result. The results of the proposed model show an accurate classify Alzheimer's clinical samples against MRI neuroimaging for diagnoses AD at a low cost.

Author(s):  
Ahmed Abdullah Farid ◽  
Gamal Selim ◽  
Hatem Khater

Alzheimer's disease (AD) is a significant regular type of dementia that causes damage in brain cells. Early detection of AD acting as an essential role in global health care due to misdiagnosis and sharing many clinical sets with other types of dementia, and costly monitoring the progression of the disease over time by magnetic reasoning imaging (MRI) with consideration of human error in manual reading. Our proposed model, in the first stage, apply the medical dataset to a composite hybrid feature selection (CHFS) to extract new features for select the best features to improve the performance of the classification process due to eliminating obscures features. In the second stage, we applied a dataset to a stacked hybrid classification system to combine Jrip and random forest classifiers with six model evaluations as meta-classifier individually to improve the prediction of clinical diagnosis. All experiments conducted on a laptop with an Intel Core i7- 8750H CPU at 2.2 GHz and 16 G of ram running on windows 10 (64 bits). The dataset evaluated using an explorer set of weka data mining software for the analysis purpose. The experimental show that the proposed model of ‏(CHFS) feature extraction ‏performs better than principal component analysis (PCA), and lead to effectively reduced the false-negative rate with a relatively high overall accuracy with support vector machine (SVM) as meta-classifier of 96.50% compared to 68.83% which is considerably better than the previous state-of-the-art result. The receiver operating characteristic (ROC) curve was equal to 95.5%. Also, the experiment on MRI images Kaggle dataset of CNN classification process with 80.21% accuracy result. The results of the proposed model show an accurate classify Alzheimer's clinical samples against MRI neuroimaging for diagnoses AD at a low cost.


2019 ◽  
Author(s):  
Minh Nguyen ◽  
Tong He ◽  
Lijun An ◽  
Daniel C. Alexander ◽  
Jiashi Feng ◽  
...  

AbstractEarly identification of individuals at risk of developing Alzheimer’s disease (AD) dementia is important for developing disease-modifying therapies. In this study, given multimodal AD markers and clinical diagnosis of an individual from one or more timepoints, we seek to predict the clinical diagnosis, cognition and ventricular volume of the individual for every month (indefinitely) into the future. We proposed and applied a minimal recurrent neural network (minimalRNN) model to data from The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) challenge, comprising longitudinal data of 1677 participants (Marinescu et al. 2018) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We compared the performance of the minimalRNN model and four baseline algorithms up to 6 years into the future. Most previous work on predicting AD progression ignore the issue of missing data, which is a prevalent issue in longitudinal data. Here, we explored three different strategies to handle missing data. Two of the strategies treated the missing data as a “preprocessing” issue, by imputing the missing data using the previous timepoint (“forward filling”) or linear interpolation (“linear filling). The third strategy utilized the minimalRNN model itself to fill in the missing data both during training and testing (“model filling”). Our analyses suggest that the minimalRNN with “model filling” compared favorably with baseline algorithms, including support vector machine/regression, linear state space (LSS) model, and long short-term memory (LSTM) model. Importantly, although the training procedure utilized longitudinal data, we found that the trained minimalRNN model exhibited similar performance, when using only 1 input timepoint or 4 input timepoints, suggesting that our approach might work well with just cross-sectional data. An earlier version of our approach was ranked 5th (out of 53 entries) in the TADPOLE challenge in 2019. The current approach is ranked 2nd out of 63 entries as of June 3rd, 2020.


Author(s):  
Ahmed Abdullah Farid ◽  
Gamal Selim ◽  
Hatem Khater

Alzheimer's disease (AD) detection acting as an essential role in global health care due to misdiagnosis and sharing many clinical sets with other types of dementia, and costly monitoring the progression of the disease over time by magnetic reasoning imaging (MRI) with consideration of human error in manual reading. This paper goal a comparative study on the performance of data mining techniques on two datasets of Clinical and Neuroimaging Tests with AD. Our proposed model in the first stage, Apply clinical medical dataset to a composite hybrid feature selection (CHFS), for extract new features to select the best features due to eliminating obscures features, In parallel with Apply a novel hybrid feature extraction of three batch edge detection algorithm and texture from MRI images dataset and optimized with fuzzy 64-bin histogram. In the second stage, we applied a clinical dataset to a stacked hybrid classification(SHC) model to combine Jrip and random forest classifiers with six model evaluations as meta-classifier individually to improve the prediction of clinical diagnosis. At the same stage of improving the classification accuracy of neuroimaging (MRI) dataset images by applying a convolution neural network (CNN) in comparison with traditional classifiers, running on extracted features from images. The authors have collected the clinical dataset of 426 subjects with (1229 potential patient sample) from oasis.org and (MRI) dataset from a benchmark kaggle.com with a total of around ~5000 images each segregated into the severity of Alzheimer's. The datasets evaluated using an explorer set of weka data mining software for the analysis purpose. The experimental show that the proposed model of ‏(CHFS) feature extraction ‏ lead to effectively reduced the false-negative rate with a relatively high overall accuracy with a stack hybrid classification of support vector machine (SVM) as meta-classifier of 96.50% compared to 68.83% of the previous result on a clinical dataset, Besides a compared model of CNN classification on MRI images dataset of 80.21%. The results showed the superiority of our CHFS model in predicting Alzheimer's disease more accurately with the clinical medical dataset in early-stage compared with the neuroimaging (MRI) dataset. The results of the proposed model were able to predict with accurately classify Alzheimer's clinical samples at a low cost in comparison with the MRI-CNN images model at the early stage and get a good indicator for high classification rate for MRI images when applying our proposed model of SHC.


2021 ◽  
Vol 10 (2) ◽  
pp. 759-766
Author(s):  
Shereen A. Taie ◽  
Wafaa Ghonaim

Magnetic Resonance Images (MRI) of the Brain is a significant tool to diagnosis Alzheimer's disease due to its ability to measure regional changes in the brain that reflect disease progression to detect early stages of the disease. In this paper, we propose a new model that adopts Bat for parameter optimization problem of Support vector machine (SVM) to diagnose Alzheimer’s disease via MRI biomedical image. The proposed model uses MRI for biomedical image classification to diagnose three classes; normal controls (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The proposed model based on segmentation for the most involved areas in the disease hippocampus, the features of MRI brain images are extracted to build feature vector of the brain, then extracting the most significant features in neuroimaging to reduce the high dimensional space of MRI images to lower dimensional subspace, and submitted to machine learning classification technique. Moreover, the model is applied on different datasets to validate the efficiency which show that the new Bat-SVM model can yield promising acceptable level of accuracy reached to 95.36 % using maximum number of bats equal to 50 and number of generation equal to 10.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1071
Author(s):  
Modupe Odusami ◽  
Rytis Maskeliūnas ◽  
Robertas Damaševičius ◽  
Tomas Krilavičius

One of the first signs of Alzheimer’s disease (AD) is mild cognitive impairment (MCI), in which there are small variants of brain changes among the intermediate stages. Although there has been an increase in research into the diagnosis of AD in its early levels of developments lately, brain changes, and their complexity for functional magnetic resonance imaging (fMRI), makes early detection of AD difficult. This paper proposes a deep learning-based method that can predict MCI, early MCI (EMCI), late MCI (LMCI), and AD. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) fMRI dataset consisting of 138 subjects was used for evaluation. The finetuned ResNet18 network achieved a classification accuracy of 99.99%, 99.95%, and 99.95% on EMCI vs. AD, LMCI vs. AD, and MCI vs. EMCI classification scenarios, respectively. The proposed model performed better than other known models in terms of accuracy, sensitivity, and specificity.


2019 ◽  
Vol 30 (3) ◽  
pp. 157-168
Author(s):  
Helmut Hildebrandt ◽  
Jana Schill ◽  
Jana Bördgen ◽  
Andreas Kastrup ◽  
Paul Eling

Abstract. This article explores the possibility of differentiating between patients suffering from Alzheimer’s disease (AD) and patients with other kinds of dementia by focusing on false alarms (FAs) on a picture recognition task (PRT). In Study 1, we compared AD and non-AD patients on the PRT and found that FAs discriminate well between these groups. Study 2 served to improve the discriminatory power of the FA score on the picture recognition task by adding associated pairs. Here, too, the FA score differentiated well between AD and non-AD patients, though the discriminatory power did not improve. The findings suggest that AD patients show a liberal response bias. Taken together, these studies suggest that FAs in picture recognition are of major importance for the clinical diagnosis of AD.


Sign in / Sign up

Export Citation Format

Share Document