scholarly journals Wastewater treatment in flow photobioreactors continuous illuminated by artificial and solar light

2020 ◽  
Vol 9 (6) ◽  
pp. e183963748
Author(s):  
Rafael Souza Leopoldino Nascimento ◽  
Ludymyla Marcelle Lima Silva ◽  
Lucas Periard ◽  
Anibal da Fonseca Santiago

The technology of microalgae photobioreactors and illuminated by LEDs has been widely studied for the treatment of wastewater. However, sunlight is a free resource and should be taken advantage of. But the question remains whether photobioreactors illuminated by natural (sunlight) light in combination with artificial light can have greater operational stability or greater performance when compared to systems illuminated only by artificial light. In this context, continuous flow photobioreactors illuminated by Light Emitting Diodes (LEDs) combined, or not, with sunlight were operated and had their performance evaluated. The variables analyzed were pH, OD, chemical oxygen demand (COD), chlorophyll - a and total suspended solids. The photobioreactors were effective for removing organic matter, with 75 ± 15% in the photobioreactor illuminated by LED and 65 ± 10% in the photobioreactor illuminated by sunlight and LED. The results showed that the use of combined lighting favors the production of dissolved oxygen and ensures greater operational stability in the removal of carbonaceous organic matter.

Author(s):  
María Guadalupe Martin del Campo-Sanchez ◽  
José Luis Escobar-Gonzalez

The main objective was to develop a wastewater treatment system by means of the electrocoagulation method according to the parameters of Chemical Oxygen Demand (COD) and Total Suspended Solids (SST). The results obtained were that at a pH of 6 and 7 with a contact time of 30 minutes, the highest percentage of removal of SST (98%) and COD (90%) was obtained. Once the conductor was selected, tests were carried out at different pH (6, 7 and 8) with contact times of 15, 30 and 45 minutes each, at 12 V and 0.4 A. A Multifactorial ANOVA statistical test was performed to determine if there were significant differences between the treatments. Once the results were evaluated, a prototype of approximately 38 L was designed with parallel plates with results of removal of SST of 93% and COD of 66%. The approximate cost of treatment per cubic meter is $ 35


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 393-398 ◽  
Author(s):  
J.S. Begg ◽  
R.L. Lavigne ◽  
P.L.M. Veneman

Reed beds are an alternative technology wastewater treatment system that mimic the biogeochemical processes inherent in natural wetlands. The purpose of this project was to determine the effectiveness of a reed bed sludge treatment system (RBSTS) in southern New England after a six-year period of operation by examining the concentrations of selected metals in the reed bed sludge biomass and by determining the fate of solids and selected nutrients. Parameters assessed in both the reed bed influent and effluent: total suspended solids, biochemical oxygen demand, nitrate-nitrogen and total phosphorus. In addition, the following metals were studied in the reed bed influent, effluent and Phragmites plant tissue and the sludge core biomass: boron, cadmium, chromium, copper, iron, lead, manganese, molybdenum, nickel, and zinc. The removal efficiencies for sludge dewatering, total suspended solids and biochemical oxygen demand were all over 90%. Nitrate and total phosphorus removal rates were 90% and 80% respectively. Overall metals removal efficient was 87%. Copper was the only metal in the sludge biomass that exceeded the standards set by the Massachusetts Department of Environmental Protection for land disposal of sludge. The highest metal concentrations, for the most part, tended to be in the lower tier of the sludge profile. The exception was boron, which was more concentrated in the middle tier of the sludge profile. The data and results presented in this paper support the notion that reed bed sludge treatment systems and the use of reed beds provide an efficient and cost effective alternative for municipal sludge treatment.


2013 ◽  
Vol 68 (2) ◽  
pp. 462-471 ◽  
Author(s):  
Mathieu Lepot ◽  
Jean-Baptiste Aubin ◽  
Jean-Luc Bertrand-Krajewski

Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.


Author(s):  
Bisekwa E ◽  
Njogu PM ◽  
Kufa-Obso T

Arabica coffee is cultivated by smallholders for commercial purposes, and it is commonly processed using wet Coffee Processing Technology. Burundi has more than 250 Coffee Processing factories which discharge their effluents to water bodies. The goal of this study was to determine the levels of physicochemical parameters in wastewater from Coffee Processing Technology factories in major coffee growing ecological zones in Burundi. Wastewater samples were collected from 19 sites representing private, public and cooperative owned coffee processing stations. Physicochemical analyses were determined in-situ field and laboratory conditions using standard procedures. Results indicate that the wastewater does not meet Burundi Effluent Discharge standards for Total Suspended solids, Chemical Oxygen Demand, Biochemical Oxygen Demand, pH. The data revealed that the wet coffee processing pollutes the environment in terms of pH, Total Suspended solids, Chemical Oxygen Demand, Biochemical Oxygen Demand. There is need to install quality polishing technologies to treat the water before disposal.


2018 ◽  
Vol 2 ◽  
pp. 50 ◽  
Author(s):  
Brian T. Hawkins ◽  
Tate W. Rogers ◽  
Christopher J. Davey ◽  
Mikayla H. Stoner ◽  
Ewan J. McAdam ◽  
...  

Onsite reuse of blackwater requires removal of considerable amounts of suspended solids and organic material in addition to inactivation of pathogens. Previously, we showed that electrochemical treatment could be used for effective pathogen inactivation in blackwater, but was inadequate to remove solids and organics to emerging industry standards. Further, we found that as solids and organics accumulate with repeated recycling, electrochemical treatment becomes less energetically sustainable. Here, we describe a pilot study in which concentrated blackwater is pretreated with ultrafiltration and granular activated carbon prior to electrochemical disinfection, and show that this combination of treatments removes 75-99% of chemical oxygen demand, 92-100% of total suspended solids, and improves the energy efficiency of electrochemical blackwater treatment by an order of magnitude.


2005 ◽  
Vol 51 (11) ◽  
pp. 159-166
Author(s):  
E. Ubay-Cokgor ◽  
C.W. Randall ◽  
D. Orhon

In this paper, the performance of the Tyson Foods wastewater treatment plant with an average flow rate of 6500 m3/d was evaluated before and after upgrading of the treatment system for nitrogen removal. This study was also covered with an additional recommendation of BIOWINTM BNR program simulation after the modification period to achieve an additional nutrient removal. The results clearly show that the upgrading was very successful for improved nitrogen removal, with a 57% decrease on the total nitrogen discharge. There also were slight reductions in the discharged loads of biological oxygen demand, total suspended solids, ammonium and total phosphorus with denitrification, even though the effluent flow was higher during operation of the nitrogen removal configuration.


Sign in / Sign up

Export Citation Format

Share Document