Development of Eimeria tenella in MDBK cell culture with a note on enhancing effect of preincubation with chicken spleen cells

1989 ◽  
Vol 27 (2) ◽  
pp. 87 ◽  
Author(s):  
J Y Chai ◽  
S H Lee ◽  
W H Kim ◽  
C K Yun
Parasitology ◽  
2018 ◽  
Vol 146 (5) ◽  
pp. 625-633
Author(s):  
Eva Wattrang ◽  
Per Thebo ◽  
Osama Ibrahim ◽  
Tina Sørensen Dalgaard ◽  
Anna Lundén

AbstractThis study aimed to set up methodology to monitor parasite-specific T-cell activation in vitro using Eimeria tenella-infected chickens. A sonicated E. tenella sporozoite protein preparation was used for the activation of chicken spleen cell cultures. Proliferation assessed by 3H-thymidin incorporation or blast transformation of T-cells assessed by immunofluorescence labelling and flow cytometry were used as read-outs for activation. Results showed that E. tenella-specific proliferation was detected in cultures of spleen cells collected in a ‘window’ between 8 and 14 days after primary infection. However, due to high variation in proliferative responses between individuals and to high background proliferation, large numbers of observations were needed to obtain significant results. Moreover, the outcome was not improved by increasing the infection dose to chickens or by depletion of T-cell receptor (TCR) γ/δ expressing cells from cultures. An E. tenella-specific blast transformation response was observed for TCRα/β expressing cells within the same ‘window’, confirming the identity of the responding cells as classic T-cells. Thus, it is possible to study the kinetics of E. tenella-specific T-cell responses in vitro. However, more in-depth phenotypic identification of the responding T-cells could improve the methodology.


1996 ◽  
Vol 16 (3) ◽  
pp. 1169-1178 ◽  
Author(s):  
D W White ◽  
G A Pitoc ◽  
T D Gilmore

The v-Rel oncoprotein of the avian Rev-T retrovirus is a member of the Rel/NF-kappa B family of transcription factors. The mechanism by which v-Rel malignantly transforms chicken spleen cells is not precisely known. To gain a better understanding of functions needed for transformation by v-Rel, we have now characterized the activities of mutant v-Rel proteins that are defective for specific protein-protein interactions. Mutant v-delta NLS, which has a deletion of the primary v-Rel nuclear localizing sequence, does not interact efficiently with I kappa B-alpha but still transforms chicken spleen cells approximately as well as wild-type v-Rel, indicating that interaction with I kappa B-alpha is not essential for the v-Rel transforming function. A second v-Rel mutant, v-SPW, has been shown to be defective for the formation of homodimers, DNA binding, and transformation. However, we now find that v-SPW can form functional DNA-binding heterodimers in vitro and in vivo with the cellular protein NF-kappa B p-52. Most strikingly, coexpression of v-SPW and p52 from a retroviral vector can induce the malignant transformation of chicken spleen cells, whereas expression of either protein alone cannot. Our results are most consistent with a model wherein Rel homodimers or heterodimers must bind DNA and alter gene expression in order to transform lymphoid cells.


Parasitology ◽  
1972 ◽  
Vol 65 (1) ◽  
pp. 131-136 ◽  
Author(s):  
B. Klimes ◽  
D. G. Rootes ◽  
Zabel Tanielian

In chickens kidney-cell culture gametogony of E. tenella usually occurs in a limited number of selected cells in the form of nests of gametocytes. Some cells contain only macrogametocytes, others only microgametocytes and some cells contain both sexes together. Mixed nests of gametocytes are evidence for genetic sex determination. By using PAS staining the origin of macrogametocytes and microgametocytes can be retraced to the merozoites and schizonts of the last generation, which are differentiated by this technique.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2617-2617
Author(s):  
Heiko Trautmann ◽  
Daniel T. Starczynowski ◽  
Christiane Pott ◽  
Lana Harder ◽  
Norbert Arnold ◽  
...  

Abstract REL/NF-κB transcription factors are implicated in the control of apoptosis and cell growth particular in hematopoetic lineages. The REL locus at chromosomal region 2p13–16 is frequently amplified in B-cell lymphomas including diffuse-large B-cell lymphoma (DLBCL) and may play a role in lymphomagenesis. Overexpression of wild-type REL can transform chicken lymphoid cells in culture, and several experimentally-generated mutations within the REL C-terminal transactivation domain (TAD) have been previously shown to enhance REL’s transforming ability. We analysed 83 B-cell lymphomas included in the ‘Deutsche Krebshilfe’ funded network „Molecular Mechanisms in Malignant Lymphoma“ for the presence of activating mutations in the coding region of REL. We performed a systematic dHPLC screening for mutation discovery and identified an identical point mutation in two human B-cell lymphomas (a t(14;18)-positive follicular lymphoma and a mediastinal B-cell lymphoma) that changes Ser525 to Pro within the REL TAD. In the mediastinal B-cell lymphoma, the mutation in REL was proven to be of germline origin. FISH showed an amplification of the REL locus in the tumor cells of this case. Quantitative allelic discrimination of S525P indicates that the mutant REL gene was over-represented in both cases. By in vitro experiments we could show that the S525P mutation enhances the in vitro transforming ability of REL in chicken spleen cells. In addition, REL-S525P differs from wild-type REL in its ability to activate certain κB site-containing reporter plasmids in transient transfection assays. In particular, REL-S525P has a reduced ability to activate the human manganese superoxide dismutase (MnSOD) promoter in A293 cells; however, the MnSOD protein is over-expressed in REL-S525P-transformed chicken spleen cells as compared to wild-type REL-transformed cells. Ser525 of REL falls within a sequence that is similar to other known phosphorylation sites of the IκB kinase, and REL-S525P shows a reduced ability to be phosphorylated by IKKα in vitro. The S525P mutation reduces IKKα- and TNFα-stimulated transactivation by REL, as measured in GAL4 reporter assays. Furthermore, REL-S525P-transformed chicken spleen cells are more resistant to TNFα-induced cell death than cells transformed by wild-type REL. These results represent the first identification of a tumor-derived activating mutation in the REL proto-oncogene, and they suggest that the S525P mutation contributes to the development of human B-cell lymphomas by altering REL’s ability to induce target gene expression by affecting an IKKα-regulated transactivation activity.


Author(s):  
Virginia Marugan-Hernandez ◽  
Georgia Jeremiah ◽  
Kelsilandia Aguiar-Martins ◽  
Alana Burrell ◽  
Sue Vaughan ◽  
...  

1997 ◽  
Vol 41 (1) ◽  
pp. 111 ◽  
Author(s):  
Jianfei Zhang ◽  
Eric Wilson ◽  
Shiguang Yang ◽  
Mark C. Healey

Sign in / Sign up

Export Citation Format

Share Document