The effect of cyclic AMP on the growth of Toxoplasma gondii in vitro

1990 ◽  
Vol 28 (2) ◽  
pp. 71 ◽  
Author(s):  
W Y Choi ◽  
H W Nam ◽  
J H Youn ◽  
D J Kim ◽  
W K Kim ◽  
...  
Keyword(s):  
Author(s):  
L.S. Cutler

Many studies previously have shown that the B-adrenergic agonist isoproterenol and the a-adrenergic agonist norepinephrine will stimulate secretion by the adult rat submandibular (SMG) and parotid glands. Recent data from several laboratories indicates that adrenergic agonists bind to specific receptors on the secretory cell surface and stimulate membrane associated adenylate cyclase activity which generates cyclic AMP. The production of cyclic AMP apparently initiates a cascade of events which culminates in exocytosis. During recent studies in our laboratory it was observed that the adenylate cyclase activity in plasma membrane fractions derived from the prenatal and early neonatal rat submandibular gland was retractile to stimulation by isoproterenol but was stimulated by norepinephrine. In addition, in vitro secretion studies indicated that these prenatal and neonatal glands would not secrete peroxidase in response to isoproterenol but would secrete in response to norepinephrine. In contrast to these in vitro observations, it has been shown that the injection of isoproterenol into the living newborn rat results in secretion of peroxidase by the SMG (1).


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1983 ◽  
Vol 50 (04) ◽  
pp. 804-809 ◽  
Author(s):  
Torstein Lyberg

SummaryHuman monocytes in vitro respond to various agents (immune complexes, lectins, endotoxin, the divalent ionophore A 23187, 12-0-tetradecanoyl-phorbol 13-acetate [TPA], purified protein derivative [PPD] of Bacille Calmette-Guerin) with an increased synthesis of the protein component of thromboplastin. The effect of cyclic AMP and cyclic GMP on this response has been studied. Dibutyryl-cyclic AMP, prostaglandin E1 and the phosphodiesterase inhibitors 3-butyl-1-methyl-xanthine (MIX) and rac -4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 201724), separately and in combination have a pronounced inhibitory effect on the response to immune complexes and PPD, and a moderate effect on the response to endotoxin and lectins. The effect on TPA response and on the response to A 23187 was slight. Dibutyryl-cyclic GMP (1 mM) gave a slight inhibition of the TPA arid IC response, but had essentially no effect on the response to other inducers. The intracellular cAMP level increased when monocytes were incubated with IC, TPA or A 23187 followed by a decrease to basal levels within 1-2 hr, whereas lectin (PHA) and PPD did not induce such changes. The cAMP response to endotoxin varied. Stimulation with IC induced an increase in monocyte cGMP levels, whereas the other stimulants did not cause such changes.


1979 ◽  
Vol 44 (5) ◽  
pp. 1651-1656 ◽  
Author(s):  
Sixtus Hynie ◽  
Jiří Smrt

3'-Oleolyl-2,3-dihydroxypropyl-AMP, 3'-stearoyl-2,3-dihydroxypropyl-AMP, octadecyl-AMP and palmitamidoethyl-AMP inhibited in comparison with adenosine or fatty acids much stronger the lipolysis in rat epididymal fat pads in vitro stimulated by isoproterenol, theophylline and dibutyryl cyclic AMP. The inhibition of the effects of the two latter drugs suggest that the described effect is caused not only by the inhibition of the cyclic AMP production but also by the inhibition of its effect on the following steps in process of lipolysis.


Author(s):  
Diego A. Molina ◽  
Gerardo A. Ramos ◽  
Alejandro Zamora-Vélez ◽  
Gina M. Gallego-López ◽  
Cristian Rocha-Roa ◽  
...  

2021 ◽  
pp. 114019
Author(s):  
Natália Carnevalli Miranda ◽  
Ester Cristina Borges Araujo ◽  
Allisson Benatti Justino ◽  
Yusmaris Cariaco ◽  
Caroline Martins Mota ◽  
...  

2021 ◽  
pp. 104063872199668
Author(s):  
Waléria Borges-Silva ◽  
Mariana M. Rezende-Gondim ◽  
Gideão S. Galvão ◽  
Daniele S. Rocha ◽  
George R. Albuquerque ◽  
...  

Parasites resembling Neospora caninum or Toxoplasma gondii were detected by cytologic examination of cerebrospinal fluid (CSF) from a dog with neurologic disease. The dog became severely ill and was euthanized. Canine tissue homogenates were used for direct parasite isolation in cell culture, bioassay in 2 mouse lineages, and PCR. T. gondii was isolated in monkey kidney cells, and species identity was confirmed by PCR. Inoculated parasites were highly virulent for mice, which developed clinical signs and were euthanized immediately. PCR-RFLP for T. gondii using the cultured isolate (TgDgBA22) was conducted with 12 genetic markers, and a unique recombinant strain was identified. Detection of T. gondii by CSF cytology, although described in humans, had not been reported previously in dogs, to our knowledge, and was crucial for the diagnosis of toxoplasmosis in the examined dog.


1991 ◽  
Vol 11 (9) ◽  
pp. 4591-4598 ◽  
Author(s):  
M R Mitts ◽  
J Bradshaw-Rouse ◽  
W Heideman

The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.


Sign in / Sign up

Export Citation Format

Share Document