scholarly journals A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

2011 ◽  
Vol 64 (1) ◽  
pp. 57
Author(s):  
Young Jin Park ◽  
Eun Hye Song ◽  
Seol Hwa Kim ◽  
Sang Hyun Choi ◽  
Ho-Taek Song ◽  
...  
2002 ◽  
Vol 100 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Teruo Iwasaki ◽  
Mutsuko Mukai ◽  
Tohru Tsujimura ◽  
Masaharu Tatsuta ◽  
Hiroyuki Nakamura ◽  
...  

2012 ◽  
Vol 18 (8) ◽  
pp. 1224-1231 ◽  
Author(s):  
Bradley N Bidwell ◽  
Clare Y Slaney ◽  
Nimali P Withana ◽  
Sam Forster ◽  
Yuan Cao ◽  
...  

Open Medicine ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Lei Wang ◽  
Ming Li ◽  
Yongxin Zhou ◽  
Yu Zhao

AbstractAberrantly expressed microRNAs have been implicated in lots of cancers. Reduced amounts of let-7g have been found in breast cancer tissues. The function of let-7g in bone metastasis of breast cancer remains poorly understood. This study is to explore the significance of let-7g and its novel target gene in bone metastasis of breast cancer.The expression of let-7g or forkhead box C2 (FOXC2) was measured in human clinical breast cancer tissues with bone metastasis by using quantitative real-time Polymerase Chain Reaction (qRT-PCR). After transfection with let-7g or anti-let-7g in breast cancer cell linesMDA-MB-231or SK-BR3, qRT-PCR and Western blot were done to test the levels of let-7g and FOXC2. The effect of anti-let-7g and/ or FOXC2 RNA interference (RNAi) on cell migration in breast cancer cells was evaluated by using wound healing assay.Clinically, qRT-PCR showed that FOXC2 levels were higher in breast cancer tissues with bone metastasis than those in their noncancerous counterparts. Let-7g was showed to be negatively correlated with FOXC2 in human breast cancer samples with bone metastasis. We found that enforced expression of let-7g reduced levels of FOXC2 protein by using Western blot in MDA-MB-231 cells. Conversely, anti-let-7g enhanced levels of FOXC2 in SK-BR3 cells. In terms of function, anti-let-7g accelerated migration of SK-BR3 cells. Interestingly, FOXC2 RNAi abrogated anti-let-7g-mediated migration in breast cancer cells. Thus, we conclude that let-7g suppresses cell migration through targeting FOXC2 in breast cancer. Our finding provides a new perspective for understanding the mechanism of bone metastasis in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document