scholarly journals APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS

Author(s):  
Abdullahi Garba USMAN ◽  
Umar Muhammad GHALİ ◽  
Selin IŞIK
2007 ◽  
Vol 61 (10) ◽  
pp. 1032-1039 ◽  
Author(s):  
Ulrike Böcker ◽  
Ragni Ofstad ◽  
Zhiyun Wu ◽  
Hanne Christine Bertram ◽  
Ganesh D. Sockalingum ◽  
...  

The aim of this study was to investigate the correlation patterns between Fourier transform infrared (FT-IR) and Raman microspectroscopic data obtained from pork muscle tissue, which helped to improve the interpretation and band assignment of the observed spectral features. The pork muscle tissue was subjected to different processing factors, including aging, salting, and heat treatment, in order to induce the necessary degree of variation of the spectra. For comparing the information gained from the two spectroscopic techniques with respect to the experimental design, multiblock principal component analysis (MPCA) was utilized for data analysis. The results showed that both FT-IR and Raman spectra were mostly affected by heat treatment, followed by the variation in salt content. Furthermore, it could be observed that IR amide I, II, and III band components appear to be effected to a different degree by brine-salting and heating. FT-IR bands assigned to specific protein secondary structures could be related to different Raman C–C stretching bands. The Raman C–C skeletal stretching bands at 1031, 1061, and 1081 cm−1 are related to the IR bands indicative of aggregated β-structures, while the Raman bands at 901 cm−1 and 934 cm−1 showed a strong correlation with IR bands assigned to α-helical structures. At the same time, the IR band at 1610 cm−1, which formerly was assigned to tyrosine in spectra originating from pork muscle, did not show a correlation to the strong tyrosine doublet at 827 and 852 cm−1 found in Raman spectra, leading to the conclusion that the IR band at 1610 cm−1 found in pork muscle tissue is not originating from tyrosine.


2016 ◽  
Vol 70 (10) ◽  
pp. 1639-1648 ◽  
Author(s):  
Jinghua Liu ◽  
Qing Huang

Haematococcus pluvialis has promising applications owing to its ability to accumulate astaxanthin under stress conditions. In order to acquire higher astaxanthin productivity from H. pluvialis, it is critical not only to develop efficient mutagenesis techniques, but also to establish rapid and effective screening methods which are highly demanded in current research and application practice. In this work, we therefore attempted to develop a new approach to screening the astaxanthin-hyperproducing strains based on spectroscopic tools. Using Fourier transform infrared (FT-IR) and Raman microspectroscopy, we have achieved rapid and quantitative analysis of the algal cells in terms of astaxanthin, β-carotene, proteins, lipids, and carbohydrates. In particular, we have found that the ratio of the IR absorption band at 1740 cm−1 to the band at 1156 cm−1 can be utilized for identifying astaxanthin-hyperproducing strains. This work may therefore open a new avenue for developing high-throughput screening methods necessary for the microbial mutant breeding industry.


2005 ◽  
Vol 59 (11) ◽  
pp. 1340-1346 ◽  
Author(s):  
Steven E. J. Bell ◽  
Louise A. Fido ◽  
S. James Speers ◽  
W. James Armstrong ◽  
Sharon Spratt

White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 232
Author(s):  
Hanim Z. Amanah ◽  
Salma Sultana Tunny ◽  
Rudiati Evi Masithoh ◽  
Myoung-Gun Choung ◽  
Kyung-Hwan Kim ◽  
...  

The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay. Furthermore, the obtained models were tested using soybean varieties not initially involved in the model construction. As a result, the best prediction models of FT-NIR were allowed to predict total isoflavones and oligosaccharides using intact seeds with acceptable performance (R2p: 0.80 and 0.72), which were slightly better than the model obtained based on FT-IR data (R2p: 0.73 and 0.70). The results also demonstrate the possibility of using FT-NIR to predict individual types of evaluated components, denoted by acceptable performance values of prediction model (R2p) of over 0.70. In addition, the result of the testing model proved the model’s performance by obtaining a similar R2 and error to the calibration model.


2003 ◽  
Vol 17 (2-3) ◽  
pp. 315-321 ◽  
Author(s):  
Kazuyuki Yano ◽  
Yasushi Sakamoto ◽  
Narumi Hirosawa ◽  
Shouko Tonooka ◽  
Hiroo Katayama ◽  
...  

Glycogen levels in human lung and colorectal cancerous tissues were measured by the Fourier transform (FT-IR) spectroscopic method. Reliability of this method was confirmed by chemical analyses of the same tissues used for the FT-IR spectroscopic measurements, suggesting that this spectroscopic method has a high specificity and sensitivity in discriminating human cancerous tissues from noncancerous tissues. The glycogen levels in the tissues were compared with the clinical, histological and histopathological factors of the cancer, demonstrating that glycogen is a critical factor in understanding the biological nature of neoplastic diseases. Furthermore, direct measurement of a very small amount of tissue by a FT-IR microscope suggested that it could be used as a diagnostic instrument for various tissue samples obtained via a fine needle biopsy procedure. The progressive alterations in rat mammary gland tumors were investigated by a near-infrared (NIR) spectrometer with a fiber optic probe. A lipid band due to the first overtone ofn-alkane was used to quantitatively evaluate malignant changes in the tumors. NIR spectroscopy may offer the potential for non‒invasive,in vivodiagnosis of human cancers.


2020 ◽  
Vol 74 (9) ◽  
pp. 1185-1197 ◽  
Author(s):  
Josef Brandt ◽  
Lars Bittrich ◽  
Franziska Fischer ◽  
Elisavet Kanaki ◽  
Alexander Tagg ◽  
...  

Determining microplastics in environmental samples quickly and reliably is a challenging task. With a largely automated combination of optical particle analysis, Fourier transform infrared (FT-IR), and Raman microscopy along with spectral database search, particle sizes, particle size distributions, and the type of polymer including particle color can be determined. We present a self-developed, open-source software package for realizing a particle analysis approach with both Raman and FT-IR microspectroscopy. Our software GEPARD (Gepard Enabled PARticle Detection) allows for acquiring an optical image, then detects particles and uses this information to steer the spectroscopic measurement. This ultimately results in a multitude of possibilities for efficiently reviewing, correcting, and reporting all obtained results.


Sign in / Sign up

Export Citation Format

Share Document