Revealing Covariance Structures in Fourier Transform Infrared and Raman Microspectroscopy Spectra: A Study on Pork Muscle Fiber Tissue Subjected to Different Processing Parameters

2007 ◽  
Vol 61 (10) ◽  
pp. 1032-1039 ◽  
Author(s):  
Ulrike Böcker ◽  
Ragni Ofstad ◽  
Zhiyun Wu ◽  
Hanne Christine Bertram ◽  
Ganesh D. Sockalingum ◽  
...  

The aim of this study was to investigate the correlation patterns between Fourier transform infrared (FT-IR) and Raman microspectroscopic data obtained from pork muscle tissue, which helped to improve the interpretation and band assignment of the observed spectral features. The pork muscle tissue was subjected to different processing factors, including aging, salting, and heat treatment, in order to induce the necessary degree of variation of the spectra. For comparing the information gained from the two spectroscopic techniques with respect to the experimental design, multiblock principal component analysis (MPCA) was utilized for data analysis. The results showed that both FT-IR and Raman spectra were mostly affected by heat treatment, followed by the variation in salt content. Furthermore, it could be observed that IR amide I, II, and III band components appear to be effected to a different degree by brine-salting and heating. FT-IR bands assigned to specific protein secondary structures could be related to different Raman C–C stretching bands. The Raman C–C skeletal stretching bands at 1031, 1061, and 1081 cm−1 are related to the IR bands indicative of aggregated β-structures, while the Raman bands at 901 cm−1 and 934 cm−1 showed a strong correlation with IR bands assigned to α-helical structures. At the same time, the IR band at 1610 cm−1, which formerly was assigned to tyrosine in spectra originating from pork muscle, did not show a correlation to the strong tyrosine doublet at 827 and 852 cm−1 found in Raman spectra, leading to the conclusion that the IR band at 1610 cm−1 found in pork muscle tissue is not originating from tyrosine.

2016 ◽  
Vol 70 (10) ◽  
pp. 1639-1648 ◽  
Author(s):  
Jinghua Liu ◽  
Qing Huang

Haematococcus pluvialis has promising applications owing to its ability to accumulate astaxanthin under stress conditions. In order to acquire higher astaxanthin productivity from H. pluvialis, it is critical not only to develop efficient mutagenesis techniques, but also to establish rapid and effective screening methods which are highly demanded in current research and application practice. In this work, we therefore attempted to develop a new approach to screening the astaxanthin-hyperproducing strains based on spectroscopic tools. Using Fourier transform infrared (FT-IR) and Raman microspectroscopy, we have achieved rapid and quantitative analysis of the algal cells in terms of astaxanthin, β-carotene, proteins, lipids, and carbohydrates. In particular, we have found that the ratio of the IR absorption band at 1740 cm−1 to the band at 1156 cm−1 can be utilized for identifying astaxanthin-hyperproducing strains. This work may therefore open a new avenue for developing high-throughput screening methods necessary for the microbial mutant breeding industry.


2005 ◽  
Vol 59 (11) ◽  
pp. 1340-1346 ◽  
Author(s):  
Steven E. J. Bell ◽  
Louise A. Fido ◽  
S. James Speers ◽  
W. James Armstrong ◽  
Sharon Spratt

White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 232
Author(s):  
Hanim Z. Amanah ◽  
Salma Sultana Tunny ◽  
Rudiati Evi Masithoh ◽  
Myoung-Gun Choung ◽  
Kyung-Hwan Kim ◽  
...  

The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay. Furthermore, the obtained models were tested using soybean varieties not initially involved in the model construction. As a result, the best prediction models of FT-NIR were allowed to predict total isoflavones and oligosaccharides using intact seeds with acceptable performance (R2p: 0.80 and 0.72), which were slightly better than the model obtained based on FT-IR data (R2p: 0.73 and 0.70). The results also demonstrate the possibility of using FT-NIR to predict individual types of evaluated components, denoted by acceptable performance values of prediction model (R2p) of over 0.70. In addition, the result of the testing model proved the model’s performance by obtaining a similar R2 and error to the calibration model.


2020 ◽  
Vol 74 (9) ◽  
pp. 1185-1197 ◽  
Author(s):  
Josef Brandt ◽  
Lars Bittrich ◽  
Franziska Fischer ◽  
Elisavet Kanaki ◽  
Alexander Tagg ◽  
...  

Determining microplastics in environmental samples quickly and reliably is a challenging task. With a largely automated combination of optical particle analysis, Fourier transform infrared (FT-IR), and Raman microscopy along with spectral database search, particle sizes, particle size distributions, and the type of polymer including particle color can be determined. We present a self-developed, open-source software package for realizing a particle analysis approach with both Raman and FT-IR microspectroscopy. Our software GEPARD (Gepard Enabled PARticle Detection) allows for acquiring an optical image, then detects particles and uses this information to steer the spectroscopic measurement. This ultimately results in a multitude of possibilities for efficiently reviewing, correcting, and reporting all obtained results.


2015 ◽  
Vol 7 (2) ◽  
pp. 736-746 ◽  
Author(s):  
S. Assi ◽  
A. Guirguis ◽  
S. Halsey ◽  
S. Fergus ◽  
J. L. Stair

Three handheld spectrometers, near-infrared (NIR), Raman and attenuated total reflectance Fourier transform-infrared (ATR-FT-IR) spectroscopy, were used for the identification of ‘legal high’ model mixtures and Internet products.


1998 ◽  
Vol 36 (2) ◽  
pp. 367-374 ◽  
Author(s):  
Éadaoin M. Timmins ◽  
Susan A. Howell ◽  
Bjørn K. Alsberg ◽  
William C. Noble ◽  
Royston Goodacre

Two rapid spectroscopic approaches for whole-organism fingerprinting of pyrolysis-mass spectrometry (PyMS) and Fourier transform-infrared spectroscopy (FT-IR) were used to analyze a group of 29 clinical and reference Candida isolates. These strains had been identified by conventional means as belonging to one of the three species Candida albicans, C. dubliniensis(previously reported as atypical C. albicans), and C. stellatoidea (which is also closely related to C. albicans). To observe the relationships of the 29 isolates as judged by PyMS and FT-IR, the spectral data were clustered by discriminant analysis. On visual inspection of the cluster analyses from both methods, three distinct clusters, which were discrete for each of the Candida species, could be seen. Moreover, these phenetic classifications were found to be very similar to those obtained by genotypic studies which examined the HinfI restriction enzyme digestion patterns of genomic DNA and by use of the 27A C. albicans-specific probe. Both spectroscopic techniques are rapid (typically, 2 min for PyMS and 10 s for FT-IR) and were shown to be capable of successfully discriminating between closely related isolates of C. albicans, C. dubliniensis, and C. stellatoidea. We believe that these whole-organism fingerprinting methods could provide opportunities for automation in clinical microbial laboratories, improving turnaround times and the use of resources.


2010 ◽  
Vol 24 (6) ◽  
pp. 601-608 ◽  
Author(s):  
M. Khalique Ahmed ◽  
Michael P. McLeod ◽  
Jean Nézivar ◽  
Allison W. Giuliani

Recently there have been reports of the contamination of cough syrups with Diethylene Glycol (DEG). The consumption of such cough syrups has devastating effects on the health. In this paper we report evidence that Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopic techniques are viable, simple, cost effective, rapid and fool proof methods for the identification and quantification of DEG in glycerin based cough syrups. The FT-IR and NIR spectra of the glycerin based cough syrup and up to 50:50 mixtures of DEG in cough syrup are recorded. The major peaks in the FT-IR spectrum of the cough syrup are assigned to the OH stretching (∼3300 cm−1), CH stretching (∼2900 cm−1), CH bending (1500–1200 cm−1) and C–O stretching (1200–900 cm−1) vibrational modes. In the FT-IR spectra of the mixtures, DEG contribute distinct peaks due to the vibrations of the C–O (920 cm−1) and OC2H4(892 cm−1) moieties of its backbone and form the basis of the DEG detection and quantification. The prominent peaks of the NIR spectra of cough syrup and DEG are assigned to the first overtones of OH and CH, and to the combination of OH and CH fundamental vibrations. Both FT-IR and NIR Partial Least Square (PLS) calibrations produced correlation coefficients of 0.98.


2005 ◽  
Vol 59 (6) ◽  
pp. 707-716 ◽  
Author(s):  
A. Kohler ◽  
C. Kirschner ◽  
A. Oust ◽  
H. Martens

Extended multiplicative signal correction (EMSC) is used to separate and to characterize physical and chemical information in spectra from Fourier transform infrared (FT-IR) microscopy. This appears especially useful for applications in infrared spectroscopy where the scatter variance in spectra changes with the chemical variance in the sample set. In these cases the chemical information of specific bands that are assigned to functional groups is easier to interpret when the scatter information is removed from the spectra. We show that scatter (physical) information in FT-IR spectra of heat-treated beef loin is related to chemical changes due to heat treatment. This information is caused by textural changes induced by the heat treatment and expressed by physical effects as the optical path length. The chemical absorbance changes introduced in the FT-IR spectra due to heat treatment are shifts in the protein region of the infrared spectrum caused by changes in the secondary structure of the proteins. If the scatter and the chemical information is not separated properly, scatter information may erroneously be interpreted as chemical information.


Sign in / Sign up

Export Citation Format

Share Document