scholarly journals Colonization of bare rock surfaces by microflora in a rocky intertidal habitat

1986 ◽  
Vol 32 ◽  
pp. 91-96 ◽  
Author(s):  
JH MacLulich
2017 ◽  
Vol 51 (2) ◽  
pp. 7-21 ◽  
Author(s):  
Kevin B. Johnson ◽  
Jayden L. Roberts

AbstractThis study reports on the identity and coverage of rocky intertidal species in the major inlets of Florida’s Atlantic coast. From north to south, these inlets are Fort George, St. Augustine, Ponce De Leon, Port Canaveral, Sebastian, Fort Pierce, Jupiter, Lake Worth, Boca Raton, Port Everglades, Baker’s Haulover, and Port of Miami. Dominant coverage in the southerly inlets included star corals (Siderastrea radians, 62% Port of Miami), ribbed barnacles (Tetraclita stalactifera, 18% Port Everglades), and zoanthid corals (Palythoa sp., 40% Baker’s Haulover). In the north, the community shifted and species absent in the south became common (e.g., eastern oysters Crassostrea virginica, 9% Fort George, 15% St. Augustine; the macroalga Enteromorpha lactuca, 10% Fort George, 17% Sebastian Inlet). The invasive bryozoan Bugula neritina was always present north of the Port of Miami and was a major community component north of Port Everglades (e.g., 27% Fort Pierce Inlet and 22% Ponce de Leon Inlet). Correlations between intertidal populations and environmental indicators included the oyster C. virginica with various sea surface temperature (SST) parameters (e.g., inverse correlations with max SST, R2 = 0.81, p = .038). Likewise, the coralline alga Pneophyllum fragile was correlated with various SST parameters (e.g., min SST, R2 = 0.51, p = .020). Bare rock and B. neritina both showed inverse correlations with the human population of inlet drainage basins (R2 = 0.28, p = .040 and R2 = 0.33, p = .026, respectively), the latter relationship an unexpected pattern for a notorious invader. These data show latitudinal patterns and provide baselines for future comparisons in the wake of projected climate change.


2020 ◽  
Vol 160 ◽  
pp. 111543 ◽  
Author(s):  
Eleanor A. Weideman ◽  
Vonica Perold ◽  
Aaniyah Omardien ◽  
Lucy K. Smyth ◽  
Peter G. Ryan

2020 ◽  
Vol 110 ◽  
Author(s):  
Shayanna M. A. da R. Souza ◽  
Helena Matthews-Cascon ◽  
Erminda da C. G. Couto

ABSTRACT We investigated the spatial variation of molluscan assemblages with different habitat-forming species and bare rock habitat in a rocky intertidal zone in northeastern Brazil. The high intertidal zone substrate was covered predominantly of barnacles [Chthamalus bisinuatus (Pilsbry, 1916)], the mid-intertidal of mussels [Brachidontes exustus (Linnaeus, 1758)] and the low intertidal of macroalgae chlorophytes [Gayralia oxysperma (Kützing) K. L. Vinogradova ex Scagel et al., 1989 and Ulva lactuca Linnaeus, 1753], phaeophytes [Sargassum vulgare C. Agardh] and rhodophytes [Palisada flagellifera (J.Agardh) K. W. Nam, 2007]. A total of 3,861 mollusks were recorded, belonging to the classes Gastropoda (9 species; 3,800 individuals), Bivalvia (3 spp.; 54 ind.), and Polyplacophora (1 sp.; 7 ind.). Functional diversity was accessed through the trophic structure, in which we identified food guilds: suspension feeders, grazers, herbivores, and carnivores. The analysis revealed significant differences in mollusk abundance, species richness, diversity indices, and trophic diversity among barnacle belts, mussel beds, algae habitat, and bare rock habitats. The highest species richness and trophic diversity were detected in algae habitat and mussel beds, which showed low abundance. In contrast, barnacle belts registered low species richness and trophic diversity and a high number of individuals. Bare rock recorded low values in all surveyed indices. This result points to the effect of environmental modification caused by habitat-forming species in this system. These species increase environmental complexity and enable the establishment of organisms through facilitation processes. The various food guilds found in this study reaffirm the role of habitat-forming species in providing niches that support different occupation patterns.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9186 ◽  
Author(s):  
Nikolas J. Kaplanis ◽  
Clinton B. Edwards ◽  
Yoan Eynaud ◽  
Jennifer E. Smith

The impacts of sea-level rise (SLR) are likely to be the greatest for ecosystems that exist at the land-sea interface, where small changes in sea-level could result in drastic changes in habitat availability. Rocky intertidal ecosystems possess a number of characteristics which make them highly vulnerable to changes in sea-level, yet our understanding of potential community-scale responses to future SLR scenarios is limited. Combining remote-sensing with in-situ large-area imaging, we quantified habitat extent and characterized the biological community at two rocky intertidal study locations in California, USA. We then used a model-based approach to estimate how a range of SLR scenarios would affect total habitat area, areal extent of dominant benthic space occupiers, and numerical abundance of invertebrates. Our results suggest that SLR will reduce total available rocky intertidal habitat area at our study locations, leading to an overall decrease in areal extent of dominant benthic space occupiers, and a reduction in invertebrate abundances. As large-scale environmental changes, such as SLR, accelerate in the next century, more extensive spatially explicit monitoring at ecologically relevant scales will be needed to visualize and quantify their impacts to biological systems.


2009 ◽  
Vol 59 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Andrea Alfaro

AbstractGut content analyses and stable isotopes (δ13C and δ15N) were used to investigate the food consumption and assimilation of the pulmonate, Onchidella nigricans, within a rocky intertidal platform at Waiwera, northern New Zealand. Analyses of gut contents indicate that this species is a generalist herbivore, which may consume a variety of micro- and macro-algae, although small zooplankton may be ingested, when present. Gut contents of individuals collected from different intertidal habitats (bare rock, Hormosira banksii, green filaments, and coralline algae) reflected the dominant algal species within each habitat, suggesting that food availability does not restrict the grazer's distribution across its range. The radular morphology and small size of this gastropod also support the notion that O. nigricans is a non-selective microphagous feeder. However, stable isotopes on O. nigricans from the four habitats and the dominant algal food types indicate a strong assimilation preference for microalgae. The δ13C values (-15 to -13‰) of O. nigricans were consistent with signatures for intertidal grazers, but δ15N values (8 to 9‰) were relatively high, which may indicate the presence of bacteria and microfaunal detritus in the diet. Clusters of isotopic signatures of individuals from different habitats suggest feeding preferences, which also may be attributed to differences in detrital and bacterial consumption. This study illustrates the importance of using parallel techniques in diet studies.


Hydrobiologia ◽  
2012 ◽  
Vol 693 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kyle W. Demes ◽  
Rebecca L. Kordas ◽  
Jennifer P. Jorve

2015 ◽  
Vol 112 (20) ◽  
pp. 6389-6394 ◽  
Author(s):  
Elisa Benincà ◽  
Bill Ballantine ◽  
Stephen P. Ellner ◽  
Jef Huisman

Although mathematical models and laboratory experiments have shown that species interactions can generate chaos, field evidence of chaos in natural ecosystems is rare. We report on a pristine rocky intertidal community located in one of the world’s oldest marine reserves that has displayed a complex cyclic succession for more than 20 y. Bare rock was colonized by barnacles and crustose algae, they were overgrown by mussels, and the subsequent detachment of the mussels returned bare rock again. These processes generated irregular species fluctuations, such that the species coexisted over many generations without ever approaching a stable equilibrium state. Analysis of the species fluctuations revealed a dominant periodicity of about 2 y, a global Lyapunov exponent statistically indistinguishable from zero, and local Lyapunov exponents that alternated systematically between negative and positive values. This pattern indicates that the community moved back and forth between stabilizing and chaotic dynamics during the cyclic succession. The results are supported by a patch-occupancy model predicting similar patterns when the species interactions were exposed to seasonal variation. Our findings show that natural ecosystems can sustain continued changes in species abundances and that seasonal forcing may push these nonequilibrium dynamics to the edge of chaos.


Sign in / Sign up

Export Citation Format

Share Document