scholarly journals Sea urchin barrens as alternative stable states of collapsed kelp ecosystems

2014 ◽  
Vol 495 ◽  
pp. 1-25 ◽  
Author(s):  
K Filbee-Dexter ◽  
RE Scheibling
2021 ◽  
Vol 8 ◽  
Author(s):  
Francesca Gizzi ◽  
João Gama Monteiro ◽  
Rodrigo Silva ◽  
Susanne Schäfer ◽  
Nuno Castro ◽  
...  

Macroalgal forests play a key role in shallow temperate rocky reefs worldwide, supporting communities with high productivity and providing several ecosystem services. Sea urchin grazing has been increasingly influencing spatial and temporal variation in algae distributions and it has become the main cause for the loss of these habitats in many coastal areas, causing a phase shift from macroalgae habitats to barren grounds. The low productive barrens often establish as alternative stable states and only a major reduction in sea urchin density can trigger the recovery of macroalgal forests. The present study aims to assess if the 2018 disease outbreak, responsible for a strong reduction in the sea urchin Diadema africanum densities in Madeira Island, was able to trigger a reverse shift from barren grounds into macroalgae-dominated state. By assessing the diversity and abundance of benthic sessile organisms, macroinvertebrates and fishes before, during and after that particular mass mortality event, we evaluate changes in benthic assemblages and relate them to variations in grazer and herbivore densities. Our results revealed a clear shift from barren state to a macroalgae habitat, with barrens characterized by bare substrate, sessile invertebrate and Crustose Coralline Algae (CCA) disappearing after the mortality event. Overall variations in benthic assemblages was best explained by four taxa (among grazers and herbivores species). However, it was the 2018 demise of D. africanum and its density reduction that most contributed to the reverse shift from a long stable barren state to a richer benthic assemblage with higher abundance of macroalgae. Despite this recent increase in macroalgae dominated habitats, their stability and persistence in Madeira Island is fragile, since it was triggered by an unpredictable disease outbreak and depends on how D. africanum populations will recover. With no control mechanisms, local urchin populations can easily reach the tipping point needed to promote a new shift into barren states. New conservation measures and active restoration are likely required to maintain and promote the local stability of macroalgal forests.


2009 ◽  
Vol 18 (1) ◽  
pp. 159-173 ◽  
Author(s):  
Brian Beckage ◽  
Chris Ellingwood ◽  

Oikos ◽  
2005 ◽  
Vol 110 (2) ◽  
pp. 409-416 ◽  
Author(s):  
Raphael K. Didham ◽  
Corinne H. Watts ◽  
David A. Norton

2018 ◽  
Vol 116 (2) ◽  
pp. 689-694 ◽  
Author(s):  
Edward W. Tekwa ◽  
Eli P. Fenichel ◽  
Simon A. Levin ◽  
Malin L. Pinsky

Understanding why some renewable resources are overharvested while others are conserved remains an important challenge. Most explanations focus on institutional or ecological differences among resources. Here, we provide theoretical and empirical evidence that conservation and overharvest can be alternative stable states within the same exclusive-resource management system because of path-dependent processes, including slow institutional adaptation. Surprisingly, this theory predicts that the alternative states of strong conservation or overharvest are most likely for resources that were previously thought to be easily conserved under optimal management or even open access. Quantitative analyses of harvest rates from 217 intensely managed fisheries supports the predictions. Fisheries’ harvest rates also showed transient dynamics characteristic of path dependence, as well as convergence to the alternative stable state after unexpected transitions. This statistical evidence for path dependence differs from previous empirical support that was based largely on case studies, experiments, and distributional analyses. Alternative stable states in conservation appear likely outcomes for many cooperatively managed renewable resources, which implies that achieving conservation outcomes hinges on harnessing existing policy tools to navigate transitions.


2017 ◽  
Vol 105 (5) ◽  
pp. 1309-1322 ◽  
Author(s):  
Melisa Blackhall ◽  
Estela Raffaele ◽  
Juan Paritsis ◽  
Florencia Tiribelli ◽  
Juan M. Morales ◽  
...  

Ecosystems ◽  
2007 ◽  
Vol 10 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Bas W. Ibelings ◽  
Rob Portielje ◽  
Eddy H. R. R. Lammens ◽  
Ruurd Noordhuis ◽  
Marcel S. van den Berg ◽  
...  

2014 ◽  
Vol 76 (4) ◽  
pp. 579-594 ◽  
Author(s):  
Griselda Chaparro ◽  
María Soledad Fontanarrosa ◽  
María Romina Schiaffino ◽  
Paula de Tezanos Pinto ◽  
Inés O’Farrell

Author(s):  
Daniel Johnson ◽  
Gabriel G Katul ◽  
Jean-Christophe Domec

Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and these failures are caused by soil drying and/or cavitation-induced xylem embolism. Xylem embolism and plant hydraulic failure share a number of analogies to “catastrophe theory” in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points or alternative stable states when control variables exogenous (e.g. soil water potential) or endogenous (e.g. leaf water potential) to the plant are allowed to slowly vary. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion (i.e. cavitation), organ-scale vulnerability to embolism, and whole-plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety-efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at very fine scales such as pit membranes, intermediate scales such as xylem network properties and at larger scales such as soil-tree hydraulic pathways are discussed. Lacunarity areas in plant hydraulics are also flagged where progress is urgently needed.


Sign in / Sign up

Export Citation Format

Share Document