barren grounds
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Francesca Gizzi ◽  
João Gama Monteiro ◽  
Rodrigo Silva ◽  
Susanne Schäfer ◽  
Nuno Castro ◽  
...  

Macroalgal forests play a key role in shallow temperate rocky reefs worldwide, supporting communities with high productivity and providing several ecosystem services. Sea urchin grazing has been increasingly influencing spatial and temporal variation in algae distributions and it has become the main cause for the loss of these habitats in many coastal areas, causing a phase shift from macroalgae habitats to barren grounds. The low productive barrens often establish as alternative stable states and only a major reduction in sea urchin density can trigger the recovery of macroalgal forests. The present study aims to assess if the 2018 disease outbreak, responsible for a strong reduction in the sea urchin Diadema africanum densities in Madeira Island, was able to trigger a reverse shift from barren grounds into macroalgae-dominated state. By assessing the diversity and abundance of benthic sessile organisms, macroinvertebrates and fishes before, during and after that particular mass mortality event, we evaluate changes in benthic assemblages and relate them to variations in grazer and herbivore densities. Our results revealed a clear shift from barren state to a macroalgae habitat, with barrens characterized by bare substrate, sessile invertebrate and Crustose Coralline Algae (CCA) disappearing after the mortality event. Overall variations in benthic assemblages was best explained by four taxa (among grazers and herbivores species). However, it was the 2018 demise of D. africanum and its density reduction that most contributed to the reverse shift from a long stable barren state to a richer benthic assemblage with higher abundance of macroalgae. Despite this recent increase in macroalgae dominated habitats, their stability and persistence in Madeira Island is fragile, since it was triggered by an unpredictable disease outbreak and depends on how D. africanum populations will recover. With no control mechanisms, local urchin populations can easily reach the tipping point needed to promote a new shift into barren states. New conservation measures and active restoration are likely required to maintain and promote the local stability of macroalgal forests.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1477
Author(s):  
Hidenori Tsukidate ◽  
Seika Otake ◽  
Yugo Kato ◽  
Ko Yoshimura ◽  
Masafumi Kitatsuji ◽  
...  

Iron and steel slag (ISS) is a byproduct of iron refining processes. The lack of iron in seawater can cause barren grounds where algae cannot grow. To improve the barren grounds of the sea, a supply of iron to the seawater is necessary. This study focused on bacteria interacting with ISS and promoting iron elution in seawater. Sulfitobacter sp. (TO1A) and Pseudomonas sp. (TO1B) were isolated from Tokyo Bay and Sagami Bay. The co-culture of both bacteria promoted more iron elution than individual cultures. After the incubation of both bacteria with ISS, quartz and vaterite appeared on the surface of the ISS. To maintain continuous iron elution from the ISS in the seawater, we also isolated Pseudoalteromonas sp. (TO7) that formed a yellow biofilm on the ISS. Iron was eluted by TO1A and TO1B, and biofilm was synthesized by TO7 continuously in the seawater. The present research is expected to contribute to the improvement of ISS usage as a material for the construction of seaweed forests.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Silvia Bianchelli ◽  
Roberto Danovaro

AbstractHabitat loss is jeopardizing marine biodiversity. In the Mediterranean Sea, the algal forests of Cystoseira spp. form one of the most complex, productive and vulnerable shallow-water habitats. These forests are rapidly regressing with negative impact on the associated biodiversity, and potential consequences in terms of ecosystem functioning. Here, by comparing healthy Cystoseira forests and barren grounds (i.e., habitats where the macroalgal forests disappeared), we assessed the effects of habitat loss on meiofaunal and nematode biodiversity, and on some ecosystem functions (here measured in terms of prokaryotic and meiofaunal biomass). Overall, our results suggest that the loss of Cystoseira forests and the consequent barren formation is associated with the loss of meiofaunal higher taxa and a decrease of nematode biodiversity, leading to the collapse of the microbial and meiofaunal variables of ecosystem functions. We conclude that, given the very limited resilience of these ecosystems, active restoration of these vulnerable habitats is needed, in order to recover their biodiversity, ecosystem functions and associated services.


2020 ◽  
Vol 7 ◽  
Author(s):  
Giuseppe Guarnieri ◽  
Stanislao Bevilacqua ◽  
Neus Figueras ◽  
Laura Tamburello ◽  
Simonetta Fraschetti

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6964 ◽  
Author(s):  
Nicolás Riquelme-Pérez ◽  
Catalina A. Musrri ◽  
Wolfgang B. Stotz ◽  
Osvaldo Cerda ◽  
Oscar Pino-Olivares ◽  
...  

Kelp forests are declining in many parts of the globe, which can lead to the spreading of barren grounds. Increased abundances of grazers, mainly due to reduction of their predators, are among the causes of this development. Here, we compared the species richness (SR), frequency of occurrence (FO), and maximum abundance (MaxN) of predatory fish and their predation pressure between kelp forest and barren ground habitats of northern-central Chile. Sampling was done using baited underwater cameras with vertical and horizontal orientation. Two prey organisms were used as tethered baits, the black sea urchin Tetrapygus niger and the porcelanid crab Petrolisthes laevigatus. SR did not show major differences between habitats, while FO and MaxN were higher on barren grounds in vertical videos, with no major differences between habitats in horizontal videos. Predation pressure did not differ between habitats, but after 24 h consumption of porcelanid crabs was significantly higher than that of sea urchins. Scartichthys viridis/gigas was the main predator, accounting for 82% of the observed predation events on Petrolisthes laevigatus. Most of these attacks occurred on barren grounds. Scartichthys viridis/gigas was the only fish observed attacking (but not consuming) tethered sea urchins. High abundances of opportunistic predators (Scartichthys viridis/gigas) are probably related to low abundances of large predatory fishes. These results suggest that intense fishing activity on large predators, and their resulting low abundances, could result in low predation pressure on sea urchins, thereby contributing to the increase of T. niger abundances in subtidal rocky habitats.


Sign in / Sign up

Export Citation Format

Share Document