Temporal variation in food limitation in larvae of the sand dollar Dendraster excentricus

2021 ◽  
Vol 665 ◽  
pp. 127-143
Author(s):  
H Nguyen ◽  
T Hoang ◽  
D Hawkins ◽  
BJ Allen ◽  
B Pernet

Rates of development of the feeding larvae of marine invertebrates may often be limited by inadequate food, extending the length of the larval period and increasing overall larval mortality. A better understanding of the frequency and importance of this phenomenon requires knowledge of the food concentration below which larvae are limited, and above which they are not, as well as estimates of how strongly food supply affects length of the planktonic period. We addressed these issues using larvae of the sand dollar Dendraster excentricus as a model and chl a concentration as a metric of food abundance. We reared larvae in natural seawater collected from coastal southern California (USA), as well as in reduced and supplemented food treatments created from this natural seawater, 6 times from 2017 to 2019 to take advantage of temporal variation in chl a concentration. Larvae showed morphological responses indicative of low food in nature in only 1 of 6 experiments and showed delayed time to 50% metamorphic competence in 2 of 6 experiments. Larvae appeared to be food limited below chl a concentrations of ~2.4-3.0 µg l-1, but developed at maximal rates at higher food concentrations. Low natural food supplies delayed time to 50% competence by up to 1.25 d. An 11 yr record of chl a concentration in waters of coastal southern California suggests that larvae of D. excentricus are likely food limited in developmental rate throughout much of the year except for late winter to late spring.

2015 ◽  
Vol 2 (6) ◽  
pp. 150114 ◽  
Author(s):  
Jason Hodin ◽  
Matthew C. Ferner ◽  
Gabriel Ng ◽  
Christopher J. Lowe ◽  
Brian Gaylord

Complex life cycles have evolved independently numerous times in marine animals as well as in disparate algae. Such life histories typically involve a dispersive immature stage followed by settlement and metamorphosis to an adult stage on the sea floor. One commonality among animals exhibiting transitions of this type is that their larvae pass through a ‘precompetent’ period in which they do not respond to localized settlement cues, before entering a ‘competent’ period, during which cues can induce settlement. Despite the widespread existence of these two phases, relatively little is known about how larvae transition between them. Moreover, recent studies have blurred the distinction between the phases by demonstrating that fluid turbulence can spark precocious activation of competence. Here, we further investigate this phenomenon by exploring how larval interactions with turbulence change across ontogeny, focusing on offspring of the sand dollar Dendraster excentricus (Eschscholtz). Our data indicate that larvae exhibit increased responsiveness to turbulence as they get older. We also demonstrate a likely cost to precocious competence: the resulting juveniles are smaller. Based upon these findings, we outline a new, testable conception of competence that has the potential to reshape our understanding of larval dispersal and connectivity among marine populations.


Sign in / Sign up

Export Citation Format

Share Document