scholarly journals Lidocaine suppresses subthreshold oscillations by inhibiting persistent Na+ current in injured dorsal root ganglion neurons

2008 ◽  
pp. 639-646
Author(s):  
H Dong ◽  
Y-H Fan ◽  
Y-Y Wang ◽  
W-T Wang ◽  
S-J Hu

The aim of this study was to determine the effect and mechanism of low concentration of lidocaine on subthreshold membrane potential oscillations (SMPO) and burst discharges in chronically compressed dorsal root ganglion (DRG) neurons. DRG neurons were isolated by enzymatic dissociation method. SMPO, burst discharges and single spike were elicited by whole cell patchclamp technique in current clamp mode. Persistent Na+ current (INaP) and transient Na+ current (INaT) were elicited in voltage clamp mode. The results showed that SMPO was suppressed and burst discharges were eliminated by tetrodotoxin (TTX, 0.2 μmol/l) in current clamp mode, INaP was blocked by 0.2 μmol/l TTX in voltage clamp mode. SMPO, burst discharges and INaP were also suppressed by low concentration of lidocaine (10 μmol/l) respectively. However, single spike and INaT could only be blocked by high concentration of lidocaine (5 mmol/l). From these results, it is suggested that INaP mediates the generation of SMPO in injured DRG neurons. Low concentration of lidocaine (10 μmol/l) suppresses SMPO by selectively inhibiting INaP, but not INaT, in chronically compressed DRG neurons.

1998 ◽  
Vol 80 (3) ◽  
pp. 1094-1104 ◽  
Author(s):  
Junichi Yagi ◽  
Rhyuji Sumino

Yagi, Junichi and Rhyuji Sumino. Inhibition of a hyperpolarization-activated current by clonidine in rat dorsal root ganglion neurons. J. Neurophysiol. 80: 1094–1104, 1998. Whole cell voltage- and current-clamp recordings were carried out to investigate the effects of clonidine, an α2-adrenoceptor agonist, in L4 and L5 dorsal root ganglion (DRG) neurons of the rat. In voltage-clamp mode, application of 20 μM clonidine reversibly reduced the inward current evoked by hyperpolarizing voltage steps. The “clonidine-sensitive current” was obtained by subtracting the current during clonidine application from the control current, and its properties were as follows. 1) It was a slowly activating inward current evoked by hyperpolarization. 2) The reversal potential in the standard extracellular solution ([K+]o = 5 mM, [Na+]o = 151 mM) was −38.3 mV, and reduction of [Na+]o shifted it to a more negative potential, whereas an increase of [K+]o shifted it to a more positive potential, indicating that the current was carried by Na+ and K+ ( P Na/ P K = 0.22). 3) The relationship between the chord conductance underlying the clonidine-sensitive current and voltage could be fitted by a Boltzmann equation. These results indicate that the clonidine-sensitive current corresponds to a hyperpolarization-activated current ( I h), i.e., clonidine inhibits I h in rat DRG neurons. DRG neurons were classified as small (15.9–32.9 μm diam), medium-sized (33–42.9 μm), and large (43–63.6 μm), and 7 of 19, 24 of 25, and 22 of 22 of these types exhibited I h with mean ± SE clonidine-induced inhibition values of 36.1 ± 3.5% ( n = 7), 43.1 ± 3.7% ( n = 24), and 35.1 ± 2.7% ( n = 22), respectively. Clonidine application to L4 and L5 DRG neurons excised from rats the sciatic nerves of which had been transected 14–35 days previously (transected DRG neurons) also reduced I h. In current-clamp mode, 9 of 13 intact and 4 of 6 transected medium-sized DRG neurons that exhibited I h responded to clonidine with hyperpolarization (>2 mV). Some medium-sized DRG neurons exhibited repetitive action potentials in response to a depolarizing current pulse, and clonidine reduced the firing discharge frequencies in 8 of 11 intact and 3 of 4 transected neurons tested. Injection of a hyperpolarizing current pulse produced time-dependent rectification in DRG neurons that exhibited I h, and clonidine blocked this rectification in all intact and transected neurons tested. These results suggest that inhibition of I h due to α2-adrenoceptor activation contributes to modulation of DRG neuronal activity in rats. On the basis of our findings, we discuss the possible mechanisms whereby sympathetically released norepinephrine modulates the abnormal activity of DRG neuronal cell bodies after nerve injury.


2003 ◽  
Vol 90 (4) ◽  
pp. 2115-2122 ◽  
Author(s):  
You Komagiri ◽  
Naoki Kitamura

The mechanism of the effect of intracellular ATP on the hyperpolarization-activated non-selective cation current ( Ih) in rat dorsal root ganglion neurons was investigated using a whole cell voltage-clamp technique. Under voltage-clamp conditions, Ih was activated by hyperpolarizing pulses raised to a voltage of between –70 and –130 mV. The activation curve of Ih in rat dorsal root ganglion (DRG) neurons shifted by about 15 mV in the positive direction with an intracellular solution containing 1 mM cAMP. When ATP (2 mM) was applied intracellularly, the half-maximal activation voltage ( Vhalf) of Ih shifted from –97.4 ± 1.9 to –86.8 ± 1.6 mV, resulting in an increase in the current amplitude of Ih by the pulse to between –80 and –90 mV. In the presence of an adenylate cyclase inhibitor, SQ-22536 (100 μM), the intracellular dialysis of ATP also produced a shift in the voltage-dependence of Ih in rat DRG neurons, indicating that the effect of ATP was not caused by cAMP converted by adenylate cyclase. Intracellular dialysis of a nonhydrolysable ATP analog, AMP-PNP or ATP-γ-S, also produced a positive shift in the voltage-dependence of Ih activation, suggesting that the effect of ATP results from its direct action on the channel protein. These results indicate that cytosolic ATP directly regulates the voltage dependence of Ih activation as an intracellular modulating factor.


MedChemComm ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 1673-1678
Author(s):  
Oliver John V. Belleza ◽  
Jortan O. Tun ◽  
Gisela P. Concepcion ◽  
Aaron Joseph L. Villaraza

Nobilamide B, a TRPV1 antagonist, and a series of Ala-substituted analogues were synthesized and their neuroactivity was assessed in a primary culture of dorsal root ganglion (DRG) neurons.


1994 ◽  
Vol 71 (1) ◽  
pp. 271-279 ◽  
Author(s):  
R. S. Scroggs ◽  
S. M. Todorovic ◽  
E. G. Anderson ◽  
A. P. Fox

1. The distribution of IH, IIR, and ILEAK was studied in different diameter rat dorsal root ganglion (DRG) neuron cell bodies (neurons). DRG neurons were studied in three diameter ranges: small (19–27 microns), medium (33–37 microns), and large (44-54 microns). IH was defined as a slowly activating inward current evoked by hyperpolarizing voltage steps from a holding potential (HP) of -60 mV, and blocked by 1 mM Cs2+ but not 1 mM Ba2+. Inward rectifier current (IIR) was defined as a rapidly activating current evoked by hyperpolarizations from HP -60 mV, which rectified inwardly around the reversal potential for potassium (EK), and was completely blocked by 100 microM Ba2+. ILEAK was defined as an outward resting current at HP -60 mV, which did not rectify and was blocked by 100 microM Ba2+ but not by 2 mM Cs+. 2. IH was observed in 23 of 23 large, 11 of 12 medium, and in 9 of 20 small diameter DRG neurons tested. Peak IH normalized to membrane surface area was significantly greater in large than in medium or small diameter DRG neurons expressing IH. All neurons exhibiting IH under voltage clamp conditions had short duration action potentials and exhibited time-dependent rectification under current clamp conditions, properties similar to A-type DRG neurons. The 11 small diameter neurons not expressing IH had long duration action potentials and did not exhibit time-dependent rectification, properties similar to C-type DRG neurons. 3. IIR was detected in 18 of 22 medium diameter neurons tested.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 47 (7) ◽  
pp. 3253-3260
Author(s):  
Huaishuang Shen ◽  
Minfeng Gan ◽  
Huilin Yang ◽  
Jun Zou

Objective Neurobiology studies are increasingly focused on the dorsal root ganglion (DRG), which plays an important role in neuropathic pain. Existing DRG neuron primary culture methods have considerable limitations, including challenging cell isolation and poor cell yield, which cause difficulty in signaling pathway studies. The present study aimed to establish an integrated primary culture method for DRG neurons. Methods DRGs were obtained from fetal rats by microdissection, and then dissociated with trypsin. The dissociated neurons were treated with 5-fluorouracil to promote growth of neurons from the isolated cells. Then, reverse transcription polymerase chain reaction and immunofluorescence assays were used to identify and purify DRG neurons. Results Isolated DRGs were successfully dissociated and showed robust growth as individual DRG neurons in neurobasal medium. Both mRNA and protein assays confirmed that DRG neurons expressed neurofilament-200 and neuron-specific enolase. Conclusions Highly purified, stable DRG neurons could be easily harvested and grown for extended periods by using this integrated cell isolation and purification method, which may help to elucidate the mechanisms underlying neuropathic pain.


1995 ◽  
Vol 73 (5) ◽  
pp. 1793-1798 ◽  
Author(s):  
M. D. Womack ◽  
E. W. McCleskey

1. Using patch-clamp methods, we show that brief prepulses to very positive voltages increase (facilitate) the amplitude of current through Ca2+ channels during a subsequent test pulse in some, but not all, dorsal root ganglion (DRG) sensory neurons. The amplitude of this facilitated current generally increases when the Ca2+ channels are inhibited by activation of the mu-opioid receptor. 2. The facilitated current is blocked by omega-conotoxin GVIA, activates in the range of high-threshold Ca2+ channels, and inactivates at relatively negative holding voltages. Thus facilitated current passes through N-type Ca2+ channels, the same channels that are inhibited by opioids and control neurotransmitter release in sensory neurons. 3. Although maximal facilitation occurs only at unphysiologically high membrane potentials (above +100 mV), some facilitation is seen after prepulses to voltages reached during action potentials. After return to the holding potential, facilitation persists for hundreds of milliseconds, considerably longer than in other neurons. Brief trains of pulses designed to mimic action potentials caused small facilitation (19% of maximal) in a fraction (8 of 24) of opioid-inhibited neurons. 4. We conclude that 1) prepulses to extremely positive voltages can cause partial recovery of Ca2+ channels inhibited by opioids; and 2) small, but detectable, facilitation is also seen after physiological stimulation in some DRG neurons. Facilitation, largely considered a biophysical epiphenomenon because of the extreme voltages used to induce it, appears to be physiologically relevant during opioid inhibition of Ca2+ channels in DRG neurons.


1999 ◽  
Vol 82 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Y. Valeyev ◽  
John C. Hackman ◽  
Alice M. Holohean ◽  
Patrick M. Wood ◽  
Jennifer L. Katz ◽  
...  

γ-Aminobutyric acid (GABA)-activated channels in embryonic (5–8 wk old) human dorsal root ganglion (DRG) neurons in dissociated culture were characterized by whole cell and single-channel techniques. All DRG neurons when held at negative holding membrane potentials displayed inward current to micromolar concentrations of GABA applied by pressure pulses from closely positioned micropipettes. The current was directly proportional to the concentration of GABA (EC50, 111 μM; Hill coefficient, 1.7). DRG neurons also responded to micromolar concentrations of pentobarbital and alphaxalone but not to cis-4-aminocrotonic acid (CACA), glycine, or taurine. Baclofen (100 μM) affected neither the holding currents nor K+ conductance (when patch pipettes were filled with 130 mM KCl) caused by depolarizing pulses. Whole cell GABA-currents were blocked by bicuculline, picrotoxin, and t-butylbicyclophosphorothionate (TBPS; all at 100 μM). The reversal potential of whole cell GABA-currents was close to the theoretical Cl− equilibrium potential, shifting with changes in intracellular Cl− concentration in a manner expected for Cl−-selective channels. The whole cell I-V curve for GABA-induced currents demonstrated slight outward rectification with nearly symmetrical outside and inside Cl− concentrations. Spectral analysis of GABA-induced membrane current fluctuations showed that the kinetic components were best fitted by a triple Lorentzian function. The apparent elementary conductance for GABA-activated Cl− channels determined from the power spectra was 22.6 pS. Single-channel recordings from cell-attached patches with pipettes containing 10 μM GABA indicated that GABA-activated channels have a main and a subconductance level with values of 30 and 19 pS, respectively. Mean open and closed times of the channel were characterized by two or three exponential decay functions, suggesting two or three open channel states and two closed states. Single channels showed a lack of rectification. The actions of GABA on cultured human embryonic DRG neurons are mediated through the activation of GABAA receptors with properties corresponding to those found in the CNS of human and other mammalian species but differing from those of cultured human adult DRG neurons.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Duan-Duan He ◽  
Yu Gao ◽  
Shan Wang ◽  
Zhong Xie ◽  
Xue-Jun Song

Background. Treatment of diabetic neuropathic pain (DNP) continues to be a major challenge, and underlying mechanisms of DNP remain elusive. We investigated treatment effects of B vitamins on DPN- and DNP-associated alterations of neurochemical signaling in the nociceptive dorsal root ganglion (DRG) neurons and the spinal cord in rats. Methods. DNP was produced in male, adult, Sprague Dawley rats by single i.p. streptozotocin (STZ). Western blot analysis and immunohistochemistry were used to analyze protein expressions in DRG and ELISA to measure the proinflammatory cytokines in the spinal cord. Behaviorally expressed DNP was determined by measuring the sensitivity of hindpaw skin to mechanical and thermal stimulation. Results. There were 87.5% (77/88) rats which developed high blood glucose within 1-2 weeks following STZ injection. Of which, 70.13% (n = 54/77) animals exhibited DNP manifested as mechanical allodynia and/or thermal hyperalgesia. Intraperitoneal administration of vitamins B1/B6/B12 (100/100/2 mg/kg, one or multiple doses) significantly attenuated DNP without affecting the blood glucose. Expressions of P2X3 and TRPV1 in CGRP-positive and IB4-positive DRG neurons as well as the interleukin-1β, tumor necrosis factor-α, and nerve growth factor in the lumbar spinal cord were greatly increased in DNP rats. Such DNP-associated neurochemical alterations were also greatly suppressed by the B-vitamin treatment. Conclusions. B-vitamin treatment can greatly suppress chronic DNP and DNP-associated increased activities of P2X3 and TRPV1 in DRG and the spinal proinflammatory cytokines, which may contribute to the pathogenesis of DNP. Systematic administration of B vitamins can be a strategy for DNP management in clinic.


Sign in / Sign up

Export Citation Format

Share Document