GABA-Induced Cl− Current in Cultured Embryonic Human Dorsal Root Ganglion Neurons

1999 ◽  
Vol 82 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Y. Valeyev ◽  
John C. Hackman ◽  
Alice M. Holohean ◽  
Patrick M. Wood ◽  
Jennifer L. Katz ◽  
...  

γ-Aminobutyric acid (GABA)-activated channels in embryonic (5–8 wk old) human dorsal root ganglion (DRG) neurons in dissociated culture were characterized by whole cell and single-channel techniques. All DRG neurons when held at negative holding membrane potentials displayed inward current to micromolar concentrations of GABA applied by pressure pulses from closely positioned micropipettes. The current was directly proportional to the concentration of GABA (EC50, 111 μM; Hill coefficient, 1.7). DRG neurons also responded to micromolar concentrations of pentobarbital and alphaxalone but not to cis-4-aminocrotonic acid (CACA), glycine, or taurine. Baclofen (100 μM) affected neither the holding currents nor K+ conductance (when patch pipettes were filled with 130 mM KCl) caused by depolarizing pulses. Whole cell GABA-currents were blocked by bicuculline, picrotoxin, and t-butylbicyclophosphorothionate (TBPS; all at 100 μM). The reversal potential of whole cell GABA-currents was close to the theoretical Cl− equilibrium potential, shifting with changes in intracellular Cl− concentration in a manner expected for Cl−-selective channels. The whole cell I-V curve for GABA-induced currents demonstrated slight outward rectification with nearly symmetrical outside and inside Cl− concentrations. Spectral analysis of GABA-induced membrane current fluctuations showed that the kinetic components were best fitted by a triple Lorentzian function. The apparent elementary conductance for GABA-activated Cl− channels determined from the power spectra was 22.6 pS. Single-channel recordings from cell-attached patches with pipettes containing 10 μM GABA indicated that GABA-activated channels have a main and a subconductance level with values of 30 and 19 pS, respectively. Mean open and closed times of the channel were characterized by two or three exponential decay functions, suggesting two or three open channel states and two closed states. Single channels showed a lack of rectification. The actions of GABA on cultured human embryonic DRG neurons are mediated through the activation of GABAA receptors with properties corresponding to those found in the CNS of human and other mammalian species but differing from those of cultured human adult DRG neurons.

1997 ◽  
Vol 77 (6) ◽  
pp. 3115-3121 ◽  
Author(s):  
George M. Smith ◽  
Richard L. Berry ◽  
Jay Yang ◽  
Darrell Tanelian

Smith, George M., Richard L. Berry, Jay Yang, and Darrell Tanelian. Electrophysiological analysis of dorsal root ganglion neurons pre- and post-coexpression of green fluorescent protein and functional 5-HT3receptor. J. Neurophysiol. 77: 3115–3121, 1997. Aequorea green fluorescent protein (GFP) is an excellent marker to examine genetically altered live cells in whole animals or culture. Its potential use in identifying genetically modified neurons, however, has not been investigated extensively. To examine the usefulness, toxicity, and potential electrophyiological effects of GFP expression in neurons, we generated adenovirus containing the mGFP4 cDNA. One week after virus transfection of dorsal root ganglion neurons (DRG), 10% of postnatal DRG neurons appeared brightly fluorescent, labelling the soma and neurites. Temporal examination of these neurons demonstrated no toxicity to DRG neurons even after several weeks in culture with repeated daily epifluorescent exposure. Electrophysiological analysis and comparison of control and viral exposed (GFP− and GFP+) DRG neurons did not demonstrate any differences in whole cell resistance, resting potential, action potential (AP) threshold, AP duration, AP amplitude, or whole cell capacitance. To investigate the usefulness of GFP as a marker for identifying neurons genetically altered to express a novel neurotransmitter receptor, a second adenovirus construct was generated containing both GFP and serotonin type 3 (5-HT3) receptor cDNAs. Transfection of DRG neurons with this virus produced an inward current in the presence of serotonin only in DRG neurons that were GFP-positive. It is concluded that adenoviral transfection of neurons with GFP, for cellular labeling, and coexpression of GFP-neurotransmitter constructs are safe, nontoxic, methods for electrophysiologically investigating neurons over several weeks. The uniqueness of the vector used in these experiments is that it was constructed to express GFP in a second cassette so that it would label the transduced cells, but have no potential for interfering with the function of the foreign 5-HT3receptor.


2006 ◽  
Vol 291 (1) ◽  
pp. C138-C146 ◽  
Author(s):  
Dawon Kang ◽  
Donghee Kim

Dorsal root ganglion (DRG) neurons express mRNAs for many two-pore domain K+ (K2P) channels that behave as background K+ channels. To identify functional background K+ channels in DRG neurons, we examined the properties of single-channel openings from cell-attached and inside-out patches from the cell bodies of DRG neurons. We found seven types of K+ channels, with single-channel conductance ranging from 14 to 120 pS in 150 mM KCl bath solution. Four of these K+ channels showed biophysical and pharmacological properties similar to TRESK (14 pS), TREK-1 (112 pS), TREK-2 (50 pS), and TRAAK (73 pS), which are members of the K2P channel family. The molecular identity of the three other K+ channels could not be determined, as they showed low channel activity and were observed infrequently. Of the four K2P channels, the TRESK-like (14 pS) K+ channel was most active at 24°C. At 37°C, the 50-pS (TREK-2 like) channel was the most active and contributed the most (69%) to the resting K+ current, followed by the TRESK-like 14-pS (16%), TREK-1-like 112-pS (12%), and TRAAK-like 73-pS (3%) channels. In DRG neurons, mRNAs of all four K2P channels, as well as those of TASK-1 and TASK-3, were expressed, as judged by RT-PCR analysis. Our results show that TREKs and TRESK together contribute >95% of the background K+ conductance of DRG neurons at 37°C. As TREKs and TRESK are targets of modulation by receptor agonists, they are likely to play an active role in the regulation of excitability in DRG neurons.


2010 ◽  
Vol 104 (6) ◽  
pp. 3113-3123 ◽  
Author(s):  
Masamichi Shinoda ◽  
Jun-Ho La ◽  
Klaus Bielefeldt ◽  
G. F. Gebhart

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by pain and hypersensitivity in the relative absence of colon inflammation or structural changes. To assess the role of P2X receptors expressed in colorectal dorsal root ganglion (c-DRG) neurons and colon hypersensitivity, we studied excitability and purinergic signaling of retrogradely labeled mouse thoracolumbar (TL) and lumbosacral (LS) c-DRG neurons after intracolonic treatment with saline or zymosan (which reproduces 2 major features of IBS—persistent colorectal hypersensitivity without inflammation) using patch-clamp, immunohistochemical, and RT-PCR techniques. Although whole cell capacitances did not differ between LS and TL c-DRG neurons and were not changed after zymosan treatment, membrane excitability was increased in LS and TL c-DRG neurons from zymosan-treated mice. Purinergic agonist adenosine-5′-triphosphate (ATP) and α,β-methylene ATP [α,β-meATP] produced inward currents in TL c-DRG neurons were predominantly P2X3-like fast (∼70% of responsive neurons); P2X2/3-like slow currents were more common in LS c-DRG neurons (∼35% of responsive neurons). Transient currents were not produced by either agonist in c-DRG neurons from P2X3−/− mice. Neither total whole cell Kv current density nor the sustained or transient Kv components was changed in c-DRG neurons after zymosan treatment. The number of cells expressing P2X3 protein and its mRNA and the kinetic properties of ATP- and α,β-meATP-evoked currents in c-DRG neurons were not changed by zymosan treatment. However, the EC50 of α,β-meATP for the fast current decreased significantly in TL c-DRG neurons. These findings suggest that colorectal hypersensitivity produced by intracolonic zymosan increases excitability and enhances purinergic signaling in c-DRG neurons.


1999 ◽  
Vol 82 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Alexander Y. Valeyev ◽  
John C. Hackman ◽  
Alice M. Holohean ◽  
Patrick M. Wood ◽  
Jennifer L. Katz ◽  
...  

Whole cell and cell-attached patch-clamp techniques characterized the neurosteroid anesthetic alphaxalone’s (5α-pregnane-3α-ol-11,20-dione) effects on GABAAreceptors and on Cl− currents in cultured embryonic (5- to 8-wk old) human dorsal root ganglion neurons. Alphaxalone applied by pressure pulses from closely positioned micropipettes failed to potentiate the inward Cl− currents produced by application of GABA. In the absence of GABA, alphaxalone (0.1–5.0 μM) directly evoked inward currents in all dorsal root ganglion neurons voltage-clamped at negative membrane potentials. The amplitude of the current was directly proportional to the concentration of alphaxalone (Hill coefficient 1.3 ± 0.15). The alphaxalone-induced whole cell current was carried largely by Cl− ions. Its reversal potential was close to the theoretical Cl− equilibrium potential, changing with a shift in the external Cl−concentration as predicted by the Nernst equation for Cl−ions. And because the alphaxalone-current was not suppressed by the competitive GABAA receptor antagonist bicuculline or by the channel blockers picrotoxin and t-butylbicyclophosphorothionate (TBPS; all at 100 μM), it did not appear to result from activation of GABAAreceptors. In contrast to GABA-currents in the same neurons, the whole cell current-voltage curves produced in the presence of alphaxalone demonstrated strong inward rectification with nearly symmetrical bath and pipette Cl− concentrations. Fluctuation analysis of the membrane current variance produced by 1.0 μM alphaxalone showed that the power density spectra were best fitted to double Lorentzian functions. The elementary conductance for alphaxalone-activated Cl− channels determined by the relationship between mean amplitude of whole cell current and variance was 30 pS. Single-channel currents in cell-attached patches when the pipette solution contained 10 μM alphaxalone revealed a single conductance state with a chord conductance of ∼29 pS. No subconductance states were seen. The current-voltage determinations for the single-channels activated by alphaxalone demonstrated a linear relationship. Mean open and shut times of single alphaxalone-activated channels were described by two exponential decay functions. Taken together, the results indicate that in embryonic human DRG neurons, micromolar concentrations of alphaxalone directly activate Cl− channels whose electrophysiological and pharmacological properties are distinct from those of Cl−channels associated with GABAA receptors.


2012 ◽  
Vol 108 (3) ◽  
pp. 834-852 ◽  
Author(s):  
Shihong Mao ◽  
Tomás Garzon-Muvdi ◽  
Mauricio Di Fulvio ◽  
Yanfang Chen ◽  
Eric Delpire ◽  
...  

GABA depolarizes and excites central neurons during early development, becoming inhibitory and hyperpolarizing with maturation. This “developmental shift” occurs abruptly, reflecting a decrease in intracellular Cl−concentration ([Cl−]i) and a hyperpolarizing shift in Cl−equilibrium potential due to upregulation of the K+-Cl−cotransporter KCC2b, a neuron-specific Cl−extruder. In contrast, primary afferent neurons (PANs) are depolarized by GABA throughout adulthood because of expression of NKCC1, a Na+-K+-2Cl−cotransporter that accumulates Cl−above equilibrium. The GABAA-mediated depolarization of PANs determines presynaptic inhibition in the spinal cord, a key mechanism gating somatosensory information. Little is known about developmental changes in Cl−transporter expression and Cl−homeostasis in PANs. Whether NKCC1 is expressed in PANs of all phenotypes or is restricted to subpopulations (e.g., nociceptors) is debatable. Likewise, whether PANs express KCC2s is controversial. We investigated NKCC1 and K+-Cl−cotransporter expression in rat and mouse dorsal root ganglion (DRG) neurons with molecular methods. Using fluorescence imaging microscopy, we measured [Cl−]iin acutely dissociated rat DRG neurons (P0–P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and classified with phenotypic markers. DRG neurons of all sizes express two NKCC1 mRNAs, one full-length and a shorter splice variant lacking exon 21. Immunolabeling with validated antibodies revealed ubiquitous expression of NKCC1 in DRG neurons irrespective of postnatal age and phenotype. As maturation progresses [Cl−]idecreases gradually, persisting above equilibrium in >95% mature neurons. DRG neurons express mRNAs for KCC1, KCC3s, and KCC4, but not for KCC2s. Mechanisms underlying PANs' developmental changes in Cl−homeostasis are discussed and compared with those of central neurons.


MedChemComm ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 1673-1678
Author(s):  
Oliver John V. Belleza ◽  
Jortan O. Tun ◽  
Gisela P. Concepcion ◽  
Aaron Joseph L. Villaraza

Nobilamide B, a TRPV1 antagonist, and a series of Ala-substituted analogues were synthesized and their neuroactivity was assessed in a primary culture of dorsal root ganglion (DRG) neurons.


1994 ◽  
Vol 71 (1) ◽  
pp. 271-279 ◽  
Author(s):  
R. S. Scroggs ◽  
S. M. Todorovic ◽  
E. G. Anderson ◽  
A. P. Fox

1. The distribution of IH, IIR, and ILEAK was studied in different diameter rat dorsal root ganglion (DRG) neuron cell bodies (neurons). DRG neurons were studied in three diameter ranges: small (19–27 microns), medium (33–37 microns), and large (44-54 microns). IH was defined as a slowly activating inward current evoked by hyperpolarizing voltage steps from a holding potential (HP) of -60 mV, and blocked by 1 mM Cs2+ but not 1 mM Ba2+. Inward rectifier current (IIR) was defined as a rapidly activating current evoked by hyperpolarizations from HP -60 mV, which rectified inwardly around the reversal potential for potassium (EK), and was completely blocked by 100 microM Ba2+. ILEAK was defined as an outward resting current at HP -60 mV, which did not rectify and was blocked by 100 microM Ba2+ but not by 2 mM Cs+. 2. IH was observed in 23 of 23 large, 11 of 12 medium, and in 9 of 20 small diameter DRG neurons tested. Peak IH normalized to membrane surface area was significantly greater in large than in medium or small diameter DRG neurons expressing IH. All neurons exhibiting IH under voltage clamp conditions had short duration action potentials and exhibited time-dependent rectification under current clamp conditions, properties similar to A-type DRG neurons. The 11 small diameter neurons not expressing IH had long duration action potentials and did not exhibit time-dependent rectification, properties similar to C-type DRG neurons. 3. IIR was detected in 18 of 22 medium diameter neurons tested.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 47 (7) ◽  
pp. 3253-3260
Author(s):  
Huaishuang Shen ◽  
Minfeng Gan ◽  
Huilin Yang ◽  
Jun Zou

Objective Neurobiology studies are increasingly focused on the dorsal root ganglion (DRG), which plays an important role in neuropathic pain. Existing DRG neuron primary culture methods have considerable limitations, including challenging cell isolation and poor cell yield, which cause difficulty in signaling pathway studies. The present study aimed to establish an integrated primary culture method for DRG neurons. Methods DRGs were obtained from fetal rats by microdissection, and then dissociated with trypsin. The dissociated neurons were treated with 5-fluorouracil to promote growth of neurons from the isolated cells. Then, reverse transcription polymerase chain reaction and immunofluorescence assays were used to identify and purify DRG neurons. Results Isolated DRGs were successfully dissociated and showed robust growth as individual DRG neurons in neurobasal medium. Both mRNA and protein assays confirmed that DRG neurons expressed neurofilament-200 and neuron-specific enolase. Conclusions Highly purified, stable DRG neurons could be easily harvested and grown for extended periods by using this integrated cell isolation and purification method, which may help to elucidate the mechanisms underlying neuropathic pain.


1995 ◽  
Vol 73 (5) ◽  
pp. 1793-1798 ◽  
Author(s):  
M. D. Womack ◽  
E. W. McCleskey

1. Using patch-clamp methods, we show that brief prepulses to very positive voltages increase (facilitate) the amplitude of current through Ca2+ channels during a subsequent test pulse in some, but not all, dorsal root ganglion (DRG) sensory neurons. The amplitude of this facilitated current generally increases when the Ca2+ channels are inhibited by activation of the mu-opioid receptor. 2. The facilitated current is blocked by omega-conotoxin GVIA, activates in the range of high-threshold Ca2+ channels, and inactivates at relatively negative holding voltages. Thus facilitated current passes through N-type Ca2+ channels, the same channels that are inhibited by opioids and control neurotransmitter release in sensory neurons. 3. Although maximal facilitation occurs only at unphysiologically high membrane potentials (above +100 mV), some facilitation is seen after prepulses to voltages reached during action potentials. After return to the holding potential, facilitation persists for hundreds of milliseconds, considerably longer than in other neurons. Brief trains of pulses designed to mimic action potentials caused small facilitation (19% of maximal) in a fraction (8 of 24) of opioid-inhibited neurons. 4. We conclude that 1) prepulses to extremely positive voltages can cause partial recovery of Ca2+ channels inhibited by opioids; and 2) small, but detectable, facilitation is also seen after physiological stimulation in some DRG neurons. Facilitation, largely considered a biophysical epiphenomenon because of the extreme voltages used to induce it, appears to be physiologically relevant during opioid inhibition of Ca2+ channels in DRG neurons.


Sign in / Sign up

Export Citation Format

Share Document