scholarly journals Measurement of mean arterial pressure: comparison of the Vasotrac monitor with the finger differential oscillometric device

2010 ◽  
pp. 691-696 ◽  
Author(s):  
K Jagomägi ◽  
R Raamat ◽  
J Talts ◽  
U Ragun ◽  
P Tähepõld

The Vasotrac monitor provides non-invasive near-continuous blood pressure monitoring and is designed to be an alternative to direct intra-arterial blood pressure (BP) measurement. As compared to radial artery invasive BP and upper arm noninvasive BP, Vasotrac readings have been found to have a good agreement with them. However, discrepancies have been reported when rapid changes in BP exist. In the present study we compared BP measured by the Vasotrac monitor on the radial artery with that recorded on the finger arteries by the differential oscillometric device allowing measurement on the beat-to-beat basis. Comparisons were performed on the mean arterial pressure (MAP) level. Special attention was paid to the signal conditioning before comparison of pressures of different temporal resolution. Altogether 383 paired MAP measurements were made in 14 healthy subjects. Based on all 383 paired measurements, the MAP values measured at the radial artery at rest were 4.8±6.0 mm Hg higher than those measured on fingers. The observed difference between the Vasotrac and differential oscillometric device can be explained by different measurement sites. This result is consistent with previous investigations, and the Vasotrac monitor can be considered to adequately track relatively rapid MAP changes on the radial artery. Attention should be paid to a proper signal conditioning before comparison of results obtained by different devices.

2015 ◽  
Vol 309 (10) ◽  
pp. R1273-R1284 ◽  
Author(s):  
Jennifer Magnusson ◽  
Kevin J. Cummings

The role of serotonin (5-HT) neurons in cardiovascular responses to acute intermittent hypoxia (AIH) has not been studied in the neonatal period. We hypothesized that a partial loss of 5-HT neurons would reduce arterial blood pressure (BP) at rest, increase the fall in BP during hypoxia, and reduce the long-term facilitation of breathing (vLTF) and BP following AIH. We exposed 2-wk-old, 5,7-dihydroxytryptamine-treated and controls to AIH (10% O2; n = 13 control, 14 treated), acute intermittent hypercapnia (5% CO2; n = 12 and 11), or acute intermittent hypercapnic hypoxia (AIHH; 10% O2, 5% CO2; n = 15 and 17). We gave five 5-min challenges of AIH and acute intermittent hypercapnia, and twenty ∼20-s challenges of AIHH to mimic sleep apnea. Systolic BP (sBP), diastolic BP, mean arterial pressure, heart rate (HR), ventilation (V̇e), and metabolic rate (V̇o2) were continuously monitored. 5,7-Dihydroxytryptamine induced an ∼35% loss of 5-HT neurons from the medullary raphe. Compared with controls, pups deficient in 5-HT neurons had reduced resting sBP (∼6 mmHg), mean arterial pressure (∼5 mmHg), and HR (56 beats/min), and experienced a reduced drop in BP during hypoxia. AIHH induced vLTF in both groups, reflected in increased V̇e and V̇e/V̇o2, and decreased arterial Pco2. The sBP of pups deficient in 5-HT neurons, but not controls, was increased 1 h following AIHH. Our data suggest that a relatively small loss of 5-HT neurons compromises resting BP and HR, but has no influence on ventilatory plasticity induced by AIHH. AIHH may be useful for reversing cardiorespiratory defects related to partial 5-HT system dysfunction.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


2001 ◽  
Vol 91 (5) ◽  
pp. 2351-2358 ◽  
Author(s):  
K. M. Gallagher ◽  
P. J. Fadel ◽  
S. A. Smith ◽  
K. H. Norton ◽  
R. G. Querry ◽  
...  

This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol ( P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.


Author(s):  
Anupma Kumari ◽  
Renu Rohatgi ◽  
Amrita Singh ◽  
Raj Kumar

Background: Hypertensive disorders of pregnancy are among the most common medical complications of pregnancy and major cause of maternal, fetal and neonatal morbidity and mortality. The purpose of this study was to compare the efficacy and safety of intravenous hydralazine and labetalol for management of severe hypertensive disorders of pregnancy.Methods: This prospective study was conducted among 100 women admitted with SBP ≥ 160 or DBP ≥ 110 mmHg or both. Patients were divided into 2 groups randomly: labetalol and hydralazine group.Results: Majority of patients (38%) were in the age group of 21-25 years and primigravida (52%). There was more significant decrease in the systolic, diastolic and mean arterial blood pressure at the end of 15 and 30 minutes in labetalol group. Labetalol required fewer doses as compared to hydralazine to achieve the target blood pressure (average 1.95 versus 3.1). Total numbers of term deliveries were 19 (38%) in hydralazine group and 16 (32%) in labetalol group. Pre-term deliveries in hydralazine and labetalol group were 14 (28%) and 15 (30%) respectively. Headache was significantly more common in hydralazine treated patients than labetalol group.Conclusions: Both hydralazine and labetalol were effective and well-tolerated in the treatment of severe hypertensive disorders of pregnancy. Labetalol may be preferred because it was more effective in lowering the systolic blood pressure, diastolic blood pressure and mean arterial pressure to achieve target levels with less number of doses.


1991 ◽  
Vol 9 (2) ◽  
pp. 115-119 ◽  
Author(s):  
Silvia Trazzi ◽  
Emanuela Mutti ◽  
Alessandra Frattola ◽  
Ben Imholz ◽  
Gianfranco Parati ◽  
...  

Author(s):  
Seyed Mohsen Anvari ◽  
Amir Hosein Kayvanpour ◽  
Mojtaba Jafari Tadi ◽  
Tero Koivisto ◽  
Mohammadreza Yazdchi ◽  
...  

2016 ◽  
Vol 124 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Judith A. R. van Waes ◽  
Wilton A. van Klei ◽  
Duminda N. Wijeysundera ◽  
Leo van Wolfswinkel ◽  
Thomas F. Lindsay ◽  
...  

Abstract Background Postoperative myocardial injury occurs frequently after noncardiac surgery and is strongly associated with mortality. Intraoperative hypotension (IOH) is hypothesized to be a possible cause. The aim of this study was to determine the association between IOH and postoperative myocardial injury. Methods This cohort study included 890 consecutive patients aged 60 yr or older undergoing vascular surgery from two university centers. The occurrence of myocardial injury was assessed by troponin measurements as part of a postoperative care protocol. IOH was defined by four different thresholds using either relative or absolute values of the mean arterial blood pressure based on previous studies. Either invasive or noninvasive blood pressure measurements were used. Poisson regression analysis was used to determine the association between IOH and postoperative myocardial injury, adjusted for potential clinical confounders and multiple comparisons. Results Depending on the definition used, IOH occurred in 12 to 81% of the patients. Postoperative myocardial injury occurred in 131 (29%) patients with IOH as defined by a mean arterial pressure less than 60 mmHg, compared with 87 (20%) patients without IOH (P = 0.001). After adjustment for potential confounding factors including mean heart rates, a 40% decrease from the preinduction mean arterial blood pressure with a cumulative duration of more than 30 min was associated with postoperative myocardial injury (relative risk, 1.8; 99% CI, 1.2 to 2.6, P &lt; 0.001). Shorter cumulative durations (less than 30 min) were not associated with myocardial injury. Postoperative myocardial infarction and death within 30 days occurred in 26 (6%) and 17 (4%) patients with IOH as defined by a mean arterial pressure less than 60 mmHg, compared with 12 (3%; P = 0.08) and 15 (3%; P = 0.77) patients without IOH, respectively. Conclusions In elderly vascular surgery patients, IOH defined as a 40% decrease from the preinduction mean arterial blood pressure with a cumulative duration of more than 30 min was associated with postoperative myocardial injury.


2007 ◽  
Vol 5;10 (9;5) ◽  
pp. 677-685
Author(s):  
David M. Schultz

Background: Several animal studies support the contention that thoracic spinal cord stimulation (SCS) might decrease arterial blood pressure. Objective: To determine if electrical stimulation of the dorsal spinal cord in humans will lower mean arterial pressure (MAP) and heart rate (HR). Design: Case Series Methods: Ten normotensive subjects that were clinically indicated for SCS testing were studied. Two of the 10 patients who underwent testing were excluded from the analysis because they did not respond to the Cold Pressor Test (CPT). Systolic blood pressure, diastolic blood pressure, and heart rate were measured continuously at the wrist (using the Vasotrac device). SCS was administered with quadripolar leads implanted into the epidural space under fluoroscopic guidance. SCS was randomly performed either in the T1-T2 or T5-T6 region of the spinal cord during normal conditions as well as during transient stress induced by CPT. The CPT was conducted by immersing the non-dominant hand in ice-cold water for 2 minutes. Results: There were moderate decreases in MAP and HR during SCS at the T5-T6 region compared to baseline that did not reach statistical significance. However, SCS at the T1-T2 region tended to increase MAP and HR compared to baseline but the change did not reach statistical significance. Arterial blood pressure was transiently elevated by 9.4 ± 3.8 mmHg using CPT during the control period with SCS turned off and also during SCS at either the T1-T2 region or T5-T6 region of the spinal cord (by 9.2 ± 5 mmHg and 10.7 ± 8.4 mmHg, respectively). During SCS at T5-T6, the CPT significantly increased MAP by 5.9±7.1 mmHg compared to control CPT (SCS off). Conclusion: This study demonstrated that SCS at either the T1-T2 or T5-T6 region did not significantly alter MAP or HR compared to baseline (no SCS). However, during transcient stress (elevated sympathetic tone) induced by CPT, there was a significant increase in MAP and moderate decrease in HR during SCS at T5-T6 region, which is not consistent with previous data in the literature. Acute SCS did not result in adverse cardiovascular responses and proved to be safe. Key words: Spinal cord stimulation, mean arterial pressure, heart rate, cold pressor test


Author(s):  
Janis M. Dionne ◽  
Shuai Jiang ◽  
Derek K. Ng ◽  
Joseph T. Flynn ◽  
Mark M. Mitsnefes ◽  
...  

Consensus blood pressure guidelines vary in their recommended ambulatory blood pressure targets for children with chronic kidney disease (CKD) because of limited research in this area. We analyzed longitudinal ambulatory blood pressure monitoring data from 679 children with moderate CKD enrolled in the observational CKiD (Chronic Kidney Disease in Children) cohort by time-varying mean arterial pressure (MAP) percentile categories based on the highest wake or sleep MAP percentile. Analyses were stratified by nonglomerular and glomerular diagnoses, with 3 models constructed: unadjusted, adjusted for age, sex, and race, and additional adjustment for proteinuria. The outcome of interest was time to renal replacement therapy or 50% decline in baseline renal function. We found that among children with nonglomerular CKD, MAP percentile was not associated with accelerated disease progression risk until after 4 years of follow-up at which point a high MAP (>90th percentile) was associated with a higher risk of progression to the composite end point (HR, 1.88 [CI, 1.03–3.44]). Among those with glomerular CKD, differential risk for progression began from baseline with the highest risk in those with MAP >90th percentile (HR, 3.23 [CI, 1.34–7.79]). These relationships were attenuated somewhat after adjustment for level of proteinuria, but the trend for higher MAP being associated with higher risk of progression remained significant. Thus, in children with CKD, having ambulatory wake or sleep MAP >90th percentile was associated with higher risk of kidney disease progression with the highest levels of MAP associated with the greatest risk of progression. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00327860


Sign in / Sign up

Export Citation Format

Share Document